Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,13 @@
|
|
| 1 |
-
from huggingface_hub import login, snapshot_download
|
|
|
|
| 2 |
from transformers import TrOCRProcessor
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
-
import numpy as np
|
| 5 |
import onnxruntime
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
import time
|
| 8 |
import json
|
|
@@ -12,198 +17,623 @@ from plotting_functions import PlotHTR
|
|
| 12 |
from segment_image import SegmentImage
|
| 13 |
from onnx_text_recognition import TextRecognition
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
)
|
|
|
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
login(token=os.getenv("HF_TOKEN"), add_to_git_credential=True)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
|
|
|
| 34 |
try:
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
line_iou=0.3,
|
| 38 |
-
region_iou=0.5,
|
| 39 |
-
line_overlap=0.5,
|
| 40 |
-
line_nms_iou=0.7,
|
| 41 |
-
region_nms_iou=0.3,
|
| 42 |
-
line_conf_threshold=0.25,
|
| 43 |
-
region_conf_threshold=0.5,
|
| 44 |
-
region_model_path=REGION_MODEL_PATH,
|
| 45 |
-
order_regions=True,
|
| 46 |
-
region_half_precision=False,
|
| 47 |
-
line_half_precision=False)
|
| 48 |
-
return segmenter
|
| 49 |
except Exception as e:
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
-
def
|
| 53 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
try:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
"""
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
"""
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
"""
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
"""
|
| 100 |
try:
|
| 101 |
-
# Get the raw request body
|
| 102 |
body = await request.body()
|
| 103 |
-
if body:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
except Exception as e:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
"""
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
|
|
|
| 207 |
if __name__ == "__main__":
|
| 208 |
-
demo
|
| 209 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import login, snapshot_download, hf_hub_download
|
| 2 |
+
from typing import Optional, Tuple, Dict, Any
|
| 3 |
from transformers import TrOCRProcessor
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from pathlib import Path
|
| 6 |
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
import onnxruntime
|
| 9 |
+
import tempfile
|
| 10 |
+
import logging
|
| 11 |
import torch
|
| 12 |
import time
|
| 13 |
import json
|
|
|
|
| 17 |
from segment_image import SegmentImage
|
| 18 |
from onnx_text_recognition import TextRecognition
|
| 19 |
|
| 20 |
+
# Configure logging
|
| 21 |
+
logging.basicConfig(
|
| 22 |
+
level=logging.INFO,
|
| 23 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 24 |
+
handlers=[
|
| 25 |
+
logging.StreamHandler() # Explicit stdout handler for HF Spaces
|
| 26 |
+
]
|
| 27 |
)
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
|
| 30 |
+
# Log startup info for debugging in HF Spaces
|
| 31 |
+
logger.info("="*50)
|
| 32 |
+
logger.info("HTR Application Starting")
|
| 33 |
+
logger.info(f"Python version: {os.sys.version}")
|
| 34 |
+
logger.info(f"Running on Hugging Face Spaces: {os.getenv('SPACE_ID', 'Local')}")
|
| 35 |
+
logger.info("="*50)
|
| 36 |
|
|
|
|
| 37 |
|
| 38 |
+
# Configuration from environment variables
|
| 39 |
+
class Config:
|
| 40 |
+
"""Application configuration from environment variables."""
|
| 41 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 42 |
+
SEGMENTATION_MAX_SIZE = 768
|
| 43 |
+
RECOGNITION_BATCH_SIZE = 10
|
| 44 |
+
SEGMENTATION_CONFIDENCE_THRESHOLD = 0.15
|
| 45 |
+
SEGMENTATION_LINE_PRECENTAGE_THRESHOLD = 7e-05
|
| 46 |
+
SEGMENTATION_REGION_PRECENTAGE_THRESHOLD = 7e-05
|
| 47 |
+
SEGMENTATION_LINE_IOU = 0.3
|
| 48 |
+
SEGMENTATION_REGION_IOU = 0.3
|
| 49 |
+
SEGMENTATION_LINE_OVERLAP_THRESHOLD = 0.5
|
| 50 |
+
SEGMENTATION_REGION_OVERLAP_THRESHOLD = 0.5
|
| 51 |
+
ALLOWED_SOURCES = ("https://astia.narc.fi, /tmp/gradio")
|
| 52 |
+
|
| 53 |
+
# Model paths
|
| 54 |
+
TROCR_MODEL_REPO = "Kansallisarkisto/multicentury-htr-model-small-onnx"
|
| 55 |
+
SEGMENTATION_MODEL_REPO = "Kansallisarkisto/rfdetr_textline_textregion_detection_model"
|
| 56 |
+
SEGMENTATION_MODEL_FILE = "rfdetr_text_seg_model_202510.pth"
|
| 57 |
|
| 58 |
+
|
| 59 |
+
# Login to HuggingFace if token is available
|
| 60 |
+
if Config.HF_TOKEN:
|
| 61 |
try:
|
| 62 |
+
login(token=Config.HF_TOKEN, add_to_git_credential=True)
|
| 63 |
+
logger.info("✓ Logged in to HuggingFace")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
except Exception as e:
|
| 65 |
+
logger.warning(f"Failed to login to HuggingFace: {e}")
|
| 66 |
+
|
| 67 |
|
| 68 |
+
def download_models() -> Tuple[str, str]:
|
| 69 |
+
"""
|
| 70 |
+
Download required models from HuggingFace Hub.
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
Tuple of (text_recognition_model_path, segmentation_model_path)
|
| 74 |
+
|
| 75 |
+
Raises:
|
| 76 |
+
RuntimeError: If model download fails
|
| 77 |
+
"""
|
| 78 |
try:
|
| 79 |
+
logger.info("Downloading text recognition model...")
|
| 80 |
+
trocr_path = snapshot_download(repo_id=Config.TROCR_MODEL_REPO)
|
| 81 |
+
logger.info(f"✓ Text recognition model downloaded to {trocr_path}")
|
| 82 |
+
|
| 83 |
+
logger.info("Downloading segmentation model...")
|
| 84 |
+
seg_path = hf_hub_download(
|
| 85 |
+
repo_id=Config.SEGMENTATION_MODEL_REPO,
|
| 86 |
+
filename=Config.SEGMENTATION_MODEL_FILE
|
| 87 |
+
)
|
| 88 |
+
logger.info(f"✓ Segmentation model downloaded to {seg_path}")
|
| 89 |
+
|
| 90 |
+
return trocr_path, seg_path
|
| 91 |
except Exception as e:
|
| 92 |
+
logger.error(f"Failed to download models: {e}")
|
| 93 |
+
raise RuntimeError(f"Model download failed: {e}")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Download models
|
| 97 |
+
TROCR_MODEL_PATH, SEGMENTATION_MODEL_PATH = download_models()
|
| 98 |
+
|
| 99 |
+
# Log CUDA availability
|
| 100 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 101 |
+
if torch.cuda.is_available():
|
| 102 |
+
logger.info(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class HTRPipeline:
|
| 106 |
+
"""
|
| 107 |
+
Handwritten Text Recognition pipeline combining segmentation and recognition.
|
| 108 |
+
|
| 109 |
+
This class manages the initialization and execution of document segmentation
|
| 110 |
+
and text recognition models.
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
def __init__(self,
|
| 114 |
+
segmentation_model_path: str,
|
| 115 |
+
recognition_model_path: str,
|
| 116 |
+
segmentation_max_size: int = 768,
|
| 117 |
+
recognition_batch_size: int = 10,
|
| 118 |
+
segmentation_confidence_threshold: float = 0.15,
|
| 119 |
+
segmentation_line_percentage_threshold: float = 7e-05,
|
| 120 |
+
segmentation_region_percentage_threshold: float = 7e-05,
|
| 121 |
+
segmentation_line_iou: float = 0.3,
|
| 122 |
+
segmentation_region_iou: float = 0.3,
|
| 123 |
+
segmentation_line_overlap_threshold: float = 0.5,
|
| 124 |
+
segmentation_region_overlap_threshold: float = 0.5
|
| 125 |
+
):
|
| 126 |
+
"""
|
| 127 |
+
Initialize HTR pipeline with segmentation and recognition models.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
segmentation_model_path: Path to segmentation model weights
|
| 131 |
+
recognition_model_path: Path to recognition model directory
|
| 132 |
+
segmentation_max_size: Maximum image dimension for segmentation
|
| 133 |
+
recognition_batch_size: Batch size for text recognition
|
| 134 |
+
segmentation_confidence_threshold: Minimum confidence score for detections
|
| 135 |
+
segmentation_line_percentage_threshold: Minimum polygon area as fraction of image area for lines
|
| 136 |
+
segmentation_region_percentage_threshold: Minimum polygon area as fraction of image area for regions
|
| 137 |
+
segmentation_line_iou: IoU threshold for merging overlapping line polygons
|
| 138 |
+
segmentation_region_iou: IoU threshold for merging overlapping region polygons
|
| 139 |
+
segmentation_line_overlap_threshold: Area overlap ratio threshold for merging lines
|
| 140 |
+
segmentation_region_overlap_threshold: Area overlap ratio threshold for merging regions
|
| 141 |
+
"""
|
| 142 |
+
self.segmenter = self._init_segmenter(segmentation_model_path,
|
| 143 |
+
segmentation_max_size,
|
| 144 |
+
segmentation_confidence_threshold,
|
| 145 |
+
segmentation_line_percentage_threshold,
|
| 146 |
+
segmentation_region_percentage_threshold,
|
| 147 |
+
segmentation_line_iou,
|
| 148 |
+
segmentation_region_iou,
|
| 149 |
+
segmentation_line_overlap_threshold,
|
| 150 |
+
segmentation_region_overlap_threshold
|
| 151 |
+
)
|
| 152 |
+
self.recognizer = self._init_recognizer(recognition_model_path, recognition_batch_size)
|
| 153 |
+
self.plotter = PlotHTR()
|
| 154 |
+
|
| 155 |
+
if self.segmenter is None or self.recognizer is None:
|
| 156 |
+
raise RuntimeError("Failed to initialize HTR pipeline components")
|
| 157 |
+
|
| 158 |
+
def _init_segmenter(self,
|
| 159 |
+
model_path: str,
|
| 160 |
+
max_size: int,
|
| 161 |
+
segmentation_confidence_threshold: float,
|
| 162 |
+
segmentation_line_percentage_threshold: float,
|
| 163 |
+
segmentation_region_percentage_threshold: float,
|
| 164 |
+
segmentation_line_iou: float,
|
| 165 |
+
segmentation_region_iou: float,
|
| 166 |
+
segmentation_line_overlap_threshold: float,
|
| 167 |
+
segmentation_region_overlap_threshold: float
|
| 168 |
+
) -> Optional[SegmentImage]:
|
| 169 |
"""
|
| 170 |
+
Initialize document segmentation model.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
model_path: Path to segmentation model
|
| 174 |
+
max_size: Maximum dimension for image preprocessing
|
| 175 |
+
segmentation_confidence_threshold: Minimum confidence score for detections
|
| 176 |
+
segmentation_line_percentage_threshold: Minimum polygon area as fraction of image area for lines
|
| 177 |
+
segmentation_region_percentage_threshold: Minimum polygon area as fraction of image area for regions
|
| 178 |
+
segmentation_line_iou: IoU threshold for merging overlapping line polygons
|
| 179 |
+
segmentation_region_iou: IoU threshold for merging overlapping region polygons
|
| 180 |
+
segmentation_line_overlap_threshold: Area overlap ratio threshold for merging lines
|
| 181 |
+
segmentation_region_overlap_threshold: Area overlap ratio threshold for merging regions
|
| 182 |
+
Returns:
|
| 183 |
+
Initialized SegmentImage instance or None if initialization fails
|
| 184 |
"""
|
| 185 |
+
try:
|
| 186 |
+
segmenter = SegmentImage(
|
| 187 |
+
model_path=model_path,
|
| 188 |
+
max_size=max_size,
|
| 189 |
+
confidence_threshold=segmentation_confidence_threshold,
|
| 190 |
+
line_percentage_threshold=segmentation_line_percentage_threshold,
|
| 191 |
+
region_percentage_threshold=segmentation_region_percentage_threshold,
|
| 192 |
+
line_iou=segmentation_line_iou,
|
| 193 |
+
region_iou=segmentation_region_iou,
|
| 194 |
+
line_overlap_threshold=segmentation_line_overlap_threshold,
|
| 195 |
+
region_overlap_threshold=segmentation_region_overlap_threshold
|
| 196 |
+
)
|
| 197 |
+
logger.info("✓ Segmentation model initialized")
|
| 198 |
+
return segmenter
|
| 199 |
+
except Exception as e:
|
| 200 |
+
logger.error(f"Failed to initialize segmentation model: {e}")
|
| 201 |
+
return None
|
| 202 |
|
| 203 |
+
def _init_recognizer(self, model_path: str, batch_size: int) -> Optional[TextRecognition]:
|
| 204 |
+
"""
|
| 205 |
+
Initialize text recognition model.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
model_path: Path to recognition model directory
|
| 209 |
+
batch_size: Number of text lines to process in parallel
|
| 210 |
+
|
| 211 |
+
Returns:
|
| 212 |
+
Initialized TextRecognition instance or None if initialization fails
|
| 213 |
+
"""
|
| 214 |
+
try:
|
| 215 |
+
recognizer = TextRecognition(
|
| 216 |
+
model_path=model_path,
|
| 217 |
+
device='cuda:0' if torch.cuda.is_available() else 'cpu',
|
| 218 |
+
batch_size=batch_size
|
| 219 |
+
)
|
| 220 |
+
logger.info("✓ Text recognition model initialized")
|
| 221 |
+
return recognizer
|
| 222 |
+
except Exception as e:
|
| 223 |
+
logger.error(f"Failed to initialize text recognition model: {e}")
|
| 224 |
+
return None
|
| 225 |
+
|
| 226 |
+
def _merge_lines(self, segment_predictions: list) -> list:
|
| 227 |
+
"""
|
| 228 |
+
Merge text lines from all regions into a single list.
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
segment_predictions: List of region dictionaries containing line data
|
| 232 |
+
|
| 233 |
+
Returns:
|
| 234 |
+
Flat list of all text line polygons
|
| 235 |
+
"""
|
| 236 |
+
return [line for region in segment_predictions for line in region.get('lines', [])]
|
| 237 |
+
|
| 238 |
+
def process_image(self, image) -> Dict[str, Any]:
|
| 239 |
+
"""
|
| 240 |
+
Process a document image through the complete HTR pipeline.
|
| 241 |
+
|
| 242 |
+
Args:
|
| 243 |
+
image: PIL Image object or numpy array
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
Dictionary containing:
|
| 247 |
+
- success: bool indicating if processing succeeded
|
| 248 |
+
- segment_predictions: List of detected regions and lines
|
| 249 |
+
- text_predictions: List of recognized text strings
|
| 250 |
+
- processing_time: Time taken in seconds
|
| 251 |
+
- error: Error message if success is False
|
| 252 |
+
"""
|
| 253 |
+
start_time = time.time()
|
| 254 |
+
result = {
|
| 255 |
+
'success': False,
|
| 256 |
+
'segment_predictions': None,
|
| 257 |
+
'text_predictions': None,
|
| 258 |
+
'processing_time': 0.0,
|
| 259 |
+
'error': None
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
# Convert PIL image to numpy if needed
|
| 264 |
+
if not isinstance(image, np.ndarray):
|
| 265 |
+
image = np.array(image.convert('RGB'))
|
| 266 |
+
|
| 267 |
+
# Run segmentation
|
| 268 |
+
segment_predictions = self.segmenter.get_segmentation(image)
|
| 269 |
+
|
| 270 |
+
if not segment_predictions:
|
| 271 |
+
result['error'] = "No text lines detected in the image"
|
| 272 |
+
result['processing_time'] = time.time() - start_time
|
| 273 |
+
return result
|
| 274 |
+
|
| 275 |
+
logger.info("✓ Segmentation completed")
|
| 276 |
+
|
| 277 |
+
# Extract all lines for recognition
|
| 278 |
+
img_lines = self._merge_lines(segment_predictions)
|
| 279 |
+
|
| 280 |
+
# Run text recognition
|
| 281 |
+
text_predictions = self.recognizer.process_lines(img_lines, image)
|
| 282 |
+
logger.info("✓ Text recognition completed")
|
| 283 |
+
|
| 284 |
+
result['success'] = True
|
| 285 |
+
result['segment_predictions'] = segment_predictions
|
| 286 |
+
result['text_predictions'] = text_predictions
|
| 287 |
+
|
| 288 |
+
except Exception as e:
|
| 289 |
+
logger.error(f"Error during image processing: {e}", exc_info=True)
|
| 290 |
+
result['error'] = str(e)
|
| 291 |
+
|
| 292 |
+
finally:
|
| 293 |
+
result['processing_time'] = time.time() - start_time
|
| 294 |
+
|
| 295 |
+
return result
|
| 296 |
+
|
| 297 |
+
def is_allowed_source(file_path: Optional[str]) -> bool:
|
| 298 |
"""
|
| 299 |
+
Check if a file path is from an allowed source.
|
| 300 |
+
|
| 301 |
+
This security measure prevents processing of files from untrusted sources,
|
| 302 |
+
limiting uploads to specific domains and temporary directories.
|
| 303 |
+
|
| 304 |
+
Args:
|
| 305 |
+
file_path: Path to the uploaded file
|
| 306 |
+
|
| 307 |
+
Returns:
|
| 308 |
+
True if source is allowed, False otherwise
|
| 309 |
+
"""
|
| 310 |
+
if not file_path:
|
| 311 |
+
logger.warning("No file path provided")
|
| 312 |
+
return False
|
| 313 |
+
|
| 314 |
+
# Check if path starts with any allowed source
|
| 315 |
+
is_allowed = any(file_path.startswith(source) for source in Config.ALLOWED_SOURCES)
|
| 316 |
+
|
| 317 |
+
if not is_allowed:
|
| 318 |
+
logger.warning(f"File path not allowed: {file_path}")
|
| 319 |
+
|
| 320 |
+
return is_allowed
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
async def extract_filepath_from_request(request: gr.Request) -> Optional[str]:
|
| 324 |
+
"""
|
| 325 |
+
Extract file path from Gradio request object.
|
| 326 |
+
|
| 327 |
+
Args:
|
| 328 |
+
request: Gradio Request object
|
| 329 |
+
|
| 330 |
+
Returns:
|
| 331 |
+
File path string or None if not found
|
| 332 |
"""
|
| 333 |
try:
|
|
|
|
| 334 |
body = await request.body()
|
| 335 |
+
if not body:
|
| 336 |
+
return None
|
| 337 |
+
|
| 338 |
+
body_str = body.decode('utf-8')
|
| 339 |
+
body_json = json.loads(body_str)
|
| 340 |
+
|
| 341 |
+
# Navigate through Gradio's request structure
|
| 342 |
+
if 'data' in body_json and isinstance(body_json['data'], list):
|
| 343 |
+
for item in body_json['data']:
|
| 344 |
+
if isinstance(item, dict) and 'path' in item:
|
| 345 |
+
file_path = item['path']
|
| 346 |
+
logger.info(f"Extracted file path: {file_path}")
|
| 347 |
+
return file_path
|
| 348 |
+
|
| 349 |
+
return None
|
| 350 |
+
|
| 351 |
+
except json.JSONDecodeError:
|
| 352 |
+
logger.warning("Request body is not valid JSON")
|
| 353 |
+
return None
|
| 354 |
except Exception as e:
|
| 355 |
+
logger.error(f"Error extracting file path: {e}")
|
| 356 |
+
return None
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
# Initialize HTR pipeline
|
| 360 |
+
try:
|
| 361 |
+
pipeline = HTRPipeline(
|
| 362 |
+
segmentation_model_path=SEGMENTATION_MODEL_PATH,
|
| 363 |
+
recognition_model_path=TROCR_MODEL_PATH,
|
| 364 |
+
segmentation_max_size=Config.SEGMENTATION_MAX_SIZE,
|
| 365 |
+
recognition_batch_size=Config.RECOGNITION_BATCH_SIZE,
|
| 366 |
+
segmentation_confidence_threshold = Config.SEGMENTATION_CONFIDENCE_THRESHOLD,
|
| 367 |
+
segmentation_line_percentage_threshold = Config.SEGMENTATION_LINE_PRECENTAGE_THRESHOLD,
|
| 368 |
+
segmentation_region_percentage_threshold = Config.SEGMENTATION_REGION_PRECENTAGE_THRESHOLD,
|
| 369 |
+
segmentation_line_iou = Config.SEGMENTATION_LINE_IOU,
|
| 370 |
+
segmentation_region_iou = Config.SEGMENTATION_REGION_IOU,
|
| 371 |
+
segmentation_line_overlap_threshold = Config.SEGMENTATION_LINE_OVERLAP_THRESHOLD,
|
| 372 |
+
segmentation_region_overlap_threshold = Config.SEGMENTATION_REGION_OVERLAP_THRESHOLD
|
| 373 |
+
)
|
| 374 |
+
logger.info("✓ HTR Pipeline initialized successfully")
|
| 375 |
+
except Exception as e:
|
| 376 |
+
logger.error(f"Failed to initialize HTR pipeline: {e}")
|
| 377 |
+
raise
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def create_demo() -> gr.Blocks:
|
| 381 |
+
"""
|
| 382 |
+
Create and configure the Gradio demo interface.
|
| 383 |
+
|
| 384 |
+
Returns:
|
| 385 |
+
Configured Gradio Blocks interface
|
| 386 |
+
"""
|
| 387 |
+
|
| 388 |
+
with gr.Blocks(
|
| 389 |
+
theme=gr.themes.Monochrome(),
|
| 390 |
+
title="Multicentury HTR Demo"
|
| 391 |
+
) as demo:
|
| 392 |
+
|
| 393 |
+
gr.Image("logo.png",
|
| 394 |
+
width=200,
|
| 395 |
+
height=100,
|
| 396 |
+
show_label=False,
|
| 397 |
+
show_download_button=False,
|
| 398 |
+
show_fullscreen_button=False,
|
| 399 |
+
container=False,
|
| 400 |
+
interactive=False
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
gr.Markdown("# 📜 Multicentury Handwritten Text Recognition")
|
| 404 |
+
|
| 405 |
+
with gr.Tabs():
|
| 406 |
+
# English documentation
|
| 407 |
+
with gr.Tab("English"):
|
| 408 |
+
gr.Markdown("""
|
| 409 |
+
## About this demo
|
| 410 |
+
|
| 411 |
+
This HTR (Handwritten Text Recognition) pipeline combines two machine learning models:
|
| 412 |
+
|
| 413 |
+
1. **Text Region & Line Detection**: Identifies text regions and individual lines in document images
|
| 414 |
+
2. **Handwritten Text Recognition**: Transcribes the detected text lines
|
| 415 |
+
|
| 416 |
+
The models have been trained by the National Archives of Finland in autumn 2025 using handwritten documents
|
| 417 |
+
from the 16th to 20th centuries.
|
| 418 |
+
|
| 419 |
+
### How to use
|
| 420 |
+
|
| 421 |
+
1. Upload an image in the **Text Content** tab
|
| 422 |
+
2. Click **Process Image**
|
| 423 |
+
3. View results: transcribed text, detected regions, and text lines
|
| 424 |
+
|
| 425 |
+
### To obtain best results
|
| 426 |
+
|
| 427 |
+
- Use high-quality scans
|
| 428 |
+
- Ensure good contrast between text and background
|
| 429 |
+
- Note that regular document layouts work best
|
| 430 |
+
|
| 431 |
+
⚠️ **Note**: This is a demo application. 24/7 availability is not guaranteed.
|
| 432 |
+
""")
|
| 433 |
+
|
| 434 |
+
# Finnish documentation
|
| 435 |
+
with gr.Tab("Suomeksi"):
|
| 436 |
+
gr.Markdown("""
|
| 437 |
+
## Tietoa demosta
|
| 438 |
+
|
| 439 |
+
Käsialantunnistusputki sisältää kaksi koneoppimismallia:
|
| 440 |
+
|
| 441 |
+
1. **Tekstialueiden ja -rivien tunnistus**: Tunnistaa tekstialueet ja yksittäiset rivit dokumenttikuvista
|
| 442 |
+
2. **Käsinkirjoitetun tekstin tunnistus**: Litteroi tunnistetut tekstirivit
|
| 443 |
+
|
| 444 |
+
Mallit on koulutettu Kansallisarkistossa syksyllä 2025 käsinkirjoitetulla aineistolla,
|
| 445 |
+
joka ajoittuu 1500-luvulta 1900-luvulle.
|
| 446 |
+
|
| 447 |
+
### Käyttöohje
|
| 448 |
+
|
| 449 |
+
1. Lataa kuva **Text Content** -välilehdellä
|
| 450 |
+
2. Paina **Process Image** -painiketta
|
| 451 |
+
3. Tarkastele tuloksia: litteroitu teksti, tunnistetut alueet ja tekstirivit
|
| 452 |
+
|
| 453 |
+
### Parhaat tulokset saat kun
|
| 454 |
+
|
| 455 |
+
- Käytät korkealaatuisia skannauksia
|
| 456 |
+
- Varmistat hyvän kontrastin tekstin ja taustan välillä
|
| 457 |
+
- Huomioit että monimutkaiset rakenteet (esim. taulukot) voivat vaikeuttaa tunnistusta
|
| 458 |
+
|
| 459 |
+
⚠️ **Huom**: Tämä on demosovellus. Ympärivuorokautista toimivuutta ei luvata.
|
| 460 |
+
""")
|
| 461 |
+
|
| 462 |
+
gr.Markdown("---")
|
| 463 |
+
|
| 464 |
+
with gr.Tabs():
|
| 465 |
+
with gr.Tab("📄 Text Content"):
|
| 466 |
+
with gr.Row():
|
| 467 |
+
with gr.Column(scale=1):
|
| 468 |
+
input_img = gr.Image(
|
| 469 |
+
label="Input Image",
|
| 470 |
+
type="pil",
|
| 471 |
+
height=400
|
| 472 |
+
)
|
| 473 |
+
with gr.Row():
|
| 474 |
+
process_btn = gr.Button(
|
| 475 |
+
"🚀 Process Image",
|
| 476 |
+
variant="primary",
|
| 477 |
+
size="lg"
|
| 478 |
+
)
|
| 479 |
+
clear_btn = gr.ClearButton(
|
| 480 |
+
components=[input_img],
|
| 481 |
+
value="🗑️ Clear"
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
with gr.Column(scale=1):
|
| 485 |
+
textbox = gr.Textbox(
|
| 486 |
+
label="Recognized Text",
|
| 487 |
+
lines=15,
|
| 488 |
+
max_lines=30,
|
| 489 |
+
show_copy_button=True,
|
| 490 |
+
placeholder="Processed text will appear here..."
|
| 491 |
+
)
|
| 492 |
+
download_text_file = gr.File(
|
| 493 |
+
label="💾 Download Text",
|
| 494 |
+
visible=False,
|
| 495 |
+
interactive=False
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
processing_time = gr.Markdown(
|
| 499 |
+
"",
|
| 500 |
+
elem_classes="processing-time"
|
| 501 |
+
)
|
| 502 |
+
status_message = gr.Markdown(
|
| 503 |
+
"",
|
| 504 |
+
elem_classes="error-message"
|
| 505 |
+
)
|
| 506 |
+
|
| 507 |
+
with gr.Tab("🗺️ Text Regions"):
|
| 508 |
+
region_img = gr.Image(
|
| 509 |
+
label="Detected Text Regions",
|
| 510 |
+
type="numpy",
|
| 511 |
+
height=500
|
| 512 |
+
)
|
| 513 |
+
region_info = gr.Markdown("Upload and process an image to see detected regions")
|
| 514 |
+
|
| 515 |
+
with gr.Tab("📝 Text Lines"):
|
| 516 |
+
line_img = gr.Image(
|
| 517 |
+
label="Detected Text Lines",
|
| 518 |
+
type="numpy",
|
| 519 |
+
height=500
|
| 520 |
+
)
|
| 521 |
+
line_info = gr.Markdown("Upload and process an image to see detected text lines")
|
| 522 |
+
|
| 523 |
+
async def process_pipeline(image, request: gr.Request):
|
| 524 |
+
"""
|
| 525 |
+
Main processing function for the Gradio interface.
|
| 526 |
+
|
| 527 |
+
Validates input, checks file source, runs HTR pipeline, and formats results.
|
| 528 |
+
"""
|
| 529 |
+
# Reset outputs
|
| 530 |
+
outputs = {
|
| 531 |
+
region_img: None,
|
| 532 |
+
line_img: None,
|
| 533 |
+
textbox: "",
|
| 534 |
+
processing_time: "",
|
| 535 |
+
status_message: "",
|
| 536 |
+
download_text_file: gr.update(visible=False, value=None),
|
| 537 |
+
region_info: "",
|
| 538 |
+
line_info: ""
|
| 539 |
+
}
|
| 540 |
+
|
| 541 |
+
# Check file source (security measure)
|
| 542 |
+
if request:
|
| 543 |
+
file_path = await extract_filepath_from_request(request)
|
| 544 |
+
if file_path and not is_allowed_source(file_path):
|
| 545 |
+
outputs[status_message] = "❌ **Error**: File source not allowed for security reasons"
|
| 546 |
+
yield tuple(outputs.values())
|
| 547 |
+
return
|
| 548 |
+
|
| 549 |
+
# Show processing status
|
| 550 |
+
outputs[status_message] = "⏳ Processing image..."
|
| 551 |
+
yield tuple(outputs.values())
|
| 552 |
+
|
| 553 |
+
# Run HTR pipeline
|
| 554 |
+
result = pipeline.process_image(image)
|
| 555 |
+
|
| 556 |
+
# Format processing time
|
| 557 |
+
time_str = f"⏱️ Processing time: {result['processing_time']:.2f}s"
|
| 558 |
+
outputs[processing_time] = time_str
|
| 559 |
+
|
| 560 |
+
if not result['success']:
|
| 561 |
+
error = result['error'] or "Unknown error occurred"
|
| 562 |
+
outputs[status_message] = f"❌ **Error**: {error}"
|
| 563 |
+
yield tuple(outputs.values())
|
| 564 |
+
return
|
| 565 |
+
|
| 566 |
+
# Process successful results
|
| 567 |
+
try:
|
| 568 |
+
segment_predictions = result['segment_predictions']
|
| 569 |
+
text_predictions = result['text_predictions']
|
| 570 |
+
|
| 571 |
+
# Generate visualizations
|
| 572 |
+
region_plot = pipeline.plotter.plot_regions(segment_predictions, image)
|
| 573 |
+
line_plot = pipeline.plotter.plot_lines(segment_predictions, image)
|
| 574 |
+
|
| 575 |
+
# Format text output
|
| 576 |
+
recognized_text = "\n".join(text_predictions) if text_predictions else ""
|
| 577 |
+
|
| 578 |
+
# Update outputs
|
| 579 |
+
outputs[region_img] = region_plot
|
| 580 |
+
outputs[line_img] = line_plot
|
| 581 |
+
outputs[textbox] = recognized_text
|
| 582 |
+
outputs[status_message] = f"Recognized {len(text_predictions)} text lines"
|
| 583 |
+
|
| 584 |
+
## Create downloadable text file if text was recognized
|
| 585 |
+
if recognized_text:
|
| 586 |
+
# Create temporary file with proper filename
|
| 587 |
+
temp_dir = tempfile.gettempdir()
|
| 588 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 589 |
+
filename = f"htr_result_{timestamp}.txt"
|
| 590 |
+
filepath = os.path.join(temp_dir, filename)
|
| 591 |
+
|
| 592 |
+
# Write text to file
|
| 593 |
+
with open(filepath, 'w', encoding='utf-8') as f:
|
| 594 |
+
f.write(recognized_text)
|
| 595 |
+
|
| 596 |
+
outputs[download_text_file] = gr.update(visible=True, value=filepath)
|
| 597 |
+
|
| 598 |
+
# Update info sections
|
| 599 |
+
num_regions = len(segment_predictions)
|
| 600 |
+
outputs[region_info] = f"Detected **{num_regions}** text region(s)"
|
| 601 |
+
outputs[line_info] = f"Detected **{len(text_predictions)}** text line(s)"
|
| 602 |
+
|
| 603 |
+
except Exception as e:
|
| 604 |
+
logger.error(f"Error formatting results: {e}", exc_info=True)
|
| 605 |
+
outputs[status_message] = f"❌ **Error**: Failed to format results - {e}"
|
| 606 |
+
|
| 607 |
+
yield tuple(outputs.values())
|
| 608 |
+
|
| 609 |
+
# Connect button to processing function
|
| 610 |
+
process_btn.click(
|
| 611 |
+
fn=process_pipeline,
|
| 612 |
+
inputs=[input_img],
|
| 613 |
+
outputs=[
|
| 614 |
+
region_img,
|
| 615 |
+
line_img,
|
| 616 |
+
textbox,
|
| 617 |
+
processing_time,
|
| 618 |
+
status_message,
|
| 619 |
+
download_text_file,
|
| 620 |
+
region_info,
|
| 621 |
+
line_info
|
| 622 |
+
],
|
| 623 |
+
api_name=False # Disable API endpoint for security
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
return demo
|
| 627 |
+
|
| 628 |
|
| 629 |
+
# Create and launch demo
|
| 630 |
if __name__ == "__main__":
|
| 631 |
+
demo = create_demo()
|
| 632 |
+
demo.queue(
|
| 633 |
+
max_size=30, # 30 users can queue without being rejected
|
| 634 |
+
default_concurrency_limit=1 # Only one image processes at a time
|
| 635 |
+
)
|
| 636 |
+
demo.launch(
|
| 637 |
+
show_error=True,
|
| 638 |
+
max_threads=2 # Minimal threads: 1 for processing + 1 for queue management
|
| 639 |
+
)
|