Spaces:
Running
Running
Create segment_image.py
Browse files- segment_image.py +340 -0
segment_image.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from shapely.validation import make_valid
|
| 2 |
+
from shapely.geometry import Polygon
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from reading_order import OrderPolygons
|
| 8 |
+
|
| 9 |
+
class SegmentImage:
|
| 10 |
+
"""Class for segmenting document image regions and text lines."""
|
| 11 |
+
def __init__(self,
|
| 12 |
+
line_model_path,
|
| 13 |
+
device,
|
| 14 |
+
line_iou=0.5,
|
| 15 |
+
region_iou=0.5,
|
| 16 |
+
line_overlap=0.5,
|
| 17 |
+
line_nms_iou=0.7,
|
| 18 |
+
region_nms_iou=0.3,
|
| 19 |
+
line_conf_threshold=0.25,
|
| 20 |
+
region_conf_threshold=0.25,
|
| 21 |
+
region_model_path=None,
|
| 22 |
+
order_regions=True,
|
| 23 |
+
region_half_precision=False,
|
| 24 |
+
line_half_precision=False):
|
| 25 |
+
|
| 26 |
+
# Path to text line detection model
|
| 27 |
+
self.line_model_path = line_model_path
|
| 28 |
+
# Path to text region detection model
|
| 29 |
+
self.region_model_path = region_model_path
|
| 30 |
+
# Defines the IoU threshold used in the non-maximum suppression (NMS) process to
|
| 31 |
+
# determine which prediction boxes should be suppressed or discarded based on their overlap with other boxes
|
| 32 |
+
self.line_nms_iou = line_nms_iou
|
| 33 |
+
self.region_nms_iou = region_nms_iou
|
| 34 |
+
# Defines the IoU threshold for text lines
|
| 35 |
+
self.line_iou = line_iou
|
| 36 |
+
# Defines the IoU threshold for text regions
|
| 37 |
+
self.region_iou = region_iou
|
| 38 |
+
# Defines the extent of line polygon overlap used for merging the polygons
|
| 39 |
+
self.line_overlap = line_overlap
|
| 40 |
+
# Defines confidence threshold for line detection
|
| 41 |
+
self.line_conf_threshold = line_conf_threshold
|
| 42 |
+
# Defines confidence threshold for region detection
|
| 43 |
+
self.region_conf_threshold = region_conf_threshold
|
| 44 |
+
# Defines the device to be used ('cpu', gpu '0', gpu '1' etc.)
|
| 45 |
+
self.device = device
|
| 46 |
+
# Defines whether a reading order is also estimated for the region detections
|
| 47 |
+
self.order_regions = order_regions
|
| 48 |
+
# Defines whether half precision (FP16) is used by the region and line prediction models
|
| 49 |
+
self.region_half_precision = region_half_precision
|
| 50 |
+
self.line_half_precision = line_half_precision
|
| 51 |
+
self.order_poly = OrderPolygons()
|
| 52 |
+
# Initialize segmentation model(s)
|
| 53 |
+
self.line_model = self.init_line_model()
|
| 54 |
+
if self.region_model_path:
|
| 55 |
+
self.region_model = self.init_region_model()
|
| 56 |
+
|
| 57 |
+
def init_line_model(self):
|
| 58 |
+
"""Function for initializing the line detection model."""
|
| 59 |
+
try:
|
| 60 |
+
# Load the trained line detection model
|
| 61 |
+
line_model = YOLO(self.line_model_path)
|
| 62 |
+
return line_model
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print('Failed to load the line detection model: %s' % e)
|
| 65 |
+
|
| 66 |
+
def init_region_model(self):
|
| 67 |
+
"""Function for initializing the region detection model."""
|
| 68 |
+
try:
|
| 69 |
+
# Load the trained line detection model
|
| 70 |
+
region_model = YOLO(self.region_model_path)
|
| 71 |
+
return region_model
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print('Failed to load the region detection model: %s' % e)
|
| 74 |
+
|
| 75 |
+
def get_region_ids(self, coords, max_min, classes, names, box_confs, img_shape):
|
| 76 |
+
"""Function for creating unique id for each detected region."""
|
| 77 |
+
n = min(len(classes), len(coords))
|
| 78 |
+
res = []
|
| 79 |
+
for i in range(n):
|
| 80 |
+
# Creates a simple index-based id for each region
|
| 81 |
+
region_id = str(i)
|
| 82 |
+
# Extracts region name corresponding to the index
|
| 83 |
+
region_type = names[classes[i]]
|
| 84 |
+
poly_dict = {'coords': coords[i],
|
| 85 |
+
'max_min': max_min[i],
|
| 86 |
+
'class': str(classes[i]),
|
| 87 |
+
'name': region_type,
|
| 88 |
+
'conf': box_confs[i],
|
| 89 |
+
'id': region_id,
|
| 90 |
+
'img_shape': img_shape}
|
| 91 |
+
res.append(poly_dict)
|
| 92 |
+
return res
|
| 93 |
+
|
| 94 |
+
def get_max_min(self, polygons):
|
| 95 |
+
"""Creates an array with the minimum and maximum
|
| 96 |
+
x and y values of the input polygons."""
|
| 97 |
+
n_rows = len(polygons)
|
| 98 |
+
xy_array = np.zeros([n_rows, 4])
|
| 99 |
+
for i, poly in enumerate(polygons):
|
| 100 |
+
x = [point[0] for point in poly]
|
| 101 |
+
y = [point[1] for point in poly]
|
| 102 |
+
if x:
|
| 103 |
+
xy_array[i,0] = max(x)
|
| 104 |
+
xy_array[i,1] = min(x)
|
| 105 |
+
if y:
|
| 106 |
+
xy_array[i,2] = max(y)
|
| 107 |
+
xy_array[i,3] = min(y)
|
| 108 |
+
return xy_array
|
| 109 |
+
|
| 110 |
+
def validate_polygon(self, polygon):
|
| 111 |
+
""""Function for testing and correcting the validity of polygons."""
|
| 112 |
+
if len(polygon) > 2:
|
| 113 |
+
polygon = Polygon(polygon)
|
| 114 |
+
if not polygon.is_valid:
|
| 115 |
+
polygon = make_valid(polygon)
|
| 116 |
+
return polygon
|
| 117 |
+
else:
|
| 118 |
+
return None
|
| 119 |
+
|
| 120 |
+
def get_iou(self, poly1, poly2):
|
| 121 |
+
"""Function for calculating Intersection over Union (IoU) values."""
|
| 122 |
+
# If the polygons don't intersect, IoU is 0
|
| 123 |
+
iou = 0
|
| 124 |
+
poly1 = self.validate_polygon(poly1)
|
| 125 |
+
poly2 = self.validate_polygon(poly2)
|
| 126 |
+
|
| 127 |
+
if poly1 and poly2:
|
| 128 |
+
if poly1.intersects(poly2):
|
| 129 |
+
# Calculates intersection of the 2 polygons
|
| 130 |
+
intersect = poly1.intersection(poly2).area
|
| 131 |
+
# Calculates union of the 2 polygons
|
| 132 |
+
uni = poly1.union(poly2)
|
| 133 |
+
# Calculates intersection over union
|
| 134 |
+
iou = intersect / uni.area
|
| 135 |
+
return iou
|
| 136 |
+
|
| 137 |
+
def merge_polygons(self, polygons, iou_threshold, overlap_threshold = None):
|
| 138 |
+
"""Merges polygons that have an IoU value
|
| 139 |
+
above the given threshold."""
|
| 140 |
+
new_polygons = []
|
| 141 |
+
dropped = set()
|
| 142 |
+
# Loops over all input polygons and merges them if the
|
| 143 |
+
# IoU value is over the given threshold
|
| 144 |
+
for i in range(0, len(polygons)):
|
| 145 |
+
poly1 = self.validate_polygon(polygons[i])
|
| 146 |
+
merged = None
|
| 147 |
+
for j in range(i+1, len(polygons)):
|
| 148 |
+
poly2 = self.validate_polygon(polygons[j])
|
| 149 |
+
if poly1 and poly2:
|
| 150 |
+
if poly1.intersects(poly2):
|
| 151 |
+
overlap = False
|
| 152 |
+
intersect = poly1.intersection(poly2)
|
| 153 |
+
uni = poly1.union(poly2)
|
| 154 |
+
# Calculates intersection over union
|
| 155 |
+
iou = intersect.area / uni.area
|
| 156 |
+
if overlap_threshold:
|
| 157 |
+
overlap = intersect.area > (overlap_threshold * min(poly1.area, poly2.area))
|
| 158 |
+
if (iou > iou_threshold) or overlap:
|
| 159 |
+
if merged:
|
| 160 |
+
# If there are multiple overlapping polygons
|
| 161 |
+
# with IoU over the threshold, they are all merged together
|
| 162 |
+
merged = uni.union(merged)
|
| 163 |
+
dropped.add(j)
|
| 164 |
+
else:
|
| 165 |
+
merged = uni
|
| 166 |
+
# Polygons that are merged together are dropped from
|
| 167 |
+
# the list
|
| 168 |
+
dropped.add(i)
|
| 169 |
+
dropped.add(j)
|
| 170 |
+
if merged:
|
| 171 |
+
if merged.geom_type in ['GeometryCollection','MultiPolygon']:
|
| 172 |
+
for geom in merged.geoms:
|
| 173 |
+
if geom.geom_type == 'Polygon':
|
| 174 |
+
new_polygons.append(list(geom.exterior.coords))
|
| 175 |
+
elif merged.geom_type == 'Polygon':
|
| 176 |
+
new_polygons.append(list(merged.exterior.coords))
|
| 177 |
+
res = [i for j, i in enumerate(polygons) if j not in dropped]
|
| 178 |
+
res += new_polygons
|
| 179 |
+
|
| 180 |
+
return res
|
| 181 |
+
|
| 182 |
+
def get_region_preds(self, img):
|
| 183 |
+
"""Function for predicting text region coordinates."""
|
| 184 |
+
results = self.region_model.predict(source=img,
|
| 185 |
+
device=self.device,
|
| 186 |
+
conf=self.region_conf_threshold,
|
| 187 |
+
half=bool(self.region_half_precision),
|
| 188 |
+
iou=self.region_nms_iou)
|
| 189 |
+
results = results[0].cpu()
|
| 190 |
+
if results.masks:
|
| 191 |
+
# Extracts detected region polygons
|
| 192 |
+
coords = results.masks.xy
|
| 193 |
+
# Merge overlapping polygons
|
| 194 |
+
coords = self.merge_polygons(coords, self.region_iou)
|
| 195 |
+
# Maximum and minimum x and y axis values for detected polygons used for ordering the polygons
|
| 196 |
+
max_min = self.get_max_min(coords).tolist()
|
| 197 |
+
# Gets a list of the predicted class labels for detected regions
|
| 198 |
+
classes = results.boxes.cls.tolist()
|
| 199 |
+
# A dictionary with class ids as keys and class names as values
|
| 200 |
+
names = results.names
|
| 201 |
+
# Confidence values for detections
|
| 202 |
+
box_confs = results.boxes.conf.tolist()
|
| 203 |
+
# A tuple containing the shape of the original image
|
| 204 |
+
img_shape = results.orig_shape
|
| 205 |
+
res = self.get_region_ids(list(coords), max_min, classes, names, box_confs, img_shape)
|
| 206 |
+
return res
|
| 207 |
+
else:
|
| 208 |
+
return None
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def get_line_preds(self, img):
|
| 212 |
+
"""Function for predicting text line coordinates."""
|
| 213 |
+
results = self.line_model.predict(source=img,
|
| 214 |
+
device=self.device,
|
| 215 |
+
conf=self.line_conf_threshold,
|
| 216 |
+
half=bool(self.line_half_precision),
|
| 217 |
+
iou=self.line_nms_iou)
|
| 218 |
+
results = results[0].cpu()
|
| 219 |
+
if results.masks:
|
| 220 |
+
# Detected text line polygons
|
| 221 |
+
coords = results.masks.xy
|
| 222 |
+
# Merge overlapping polygons
|
| 223 |
+
coords = self.merge_polygons(coords, self.line_iou, self.line_overlap)
|
| 224 |
+
# Maximum and minimum x and y axis values for detected polygons
|
| 225 |
+
max_min = self.get_max_min(coords).tolist()
|
| 226 |
+
# Confidence values for detections
|
| 227 |
+
box_confs = results.boxes.conf.tolist()
|
| 228 |
+
res_dict = {'coords': list(coords), 'max_min': max_min, 'confs': box_confs}
|
| 229 |
+
return res_dict
|
| 230 |
+
else:
|
| 231 |
+
return None
|
| 232 |
+
|
| 233 |
+
def get_dist(self, line_polygon, regions):
|
| 234 |
+
"""Function for finding the closest region to the text line."""
|
| 235 |
+
dist, reg_id = 1000000, None
|
| 236 |
+
line_polygon = self.validate_polygon(line_polygon)
|
| 237 |
+
|
| 238 |
+
if line_polygon:
|
| 239 |
+
for region in regions:
|
| 240 |
+
# Calculates dictance between line and regions polygons
|
| 241 |
+
region_polygon = self.validate_polygon(region['coords'])
|
| 242 |
+
if region_polygon:
|
| 243 |
+
line_reg_dist = line_polygon.distance(region_polygon)
|
| 244 |
+
if line_reg_dist < dist:
|
| 245 |
+
dist = line_reg_dist
|
| 246 |
+
reg_id = region['id']
|
| 247 |
+
return reg_id
|
| 248 |
+
|
| 249 |
+
def get_line_regions(self, lines, regions):
|
| 250 |
+
"""Function for connecting each text line to one region."""
|
| 251 |
+
lines_list = []
|
| 252 |
+
for i in range(len(lines['coords'])):
|
| 253 |
+
iou, reg_id, conf = 0, '', 0.0
|
| 254 |
+
max_min = [0.0, 0.0, 0.0, 0.0]
|
| 255 |
+
polygon = lines['coords'][i]
|
| 256 |
+
for region in regions:
|
| 257 |
+
line_reg_iou = self.get_iou(polygon, region['coords'])
|
| 258 |
+
if line_reg_iou > iou:
|
| 259 |
+
iou = line_reg_iou
|
| 260 |
+
reg_id = region['id']
|
| 261 |
+
# If line polygon does not intersect with any region, a distance metric is used for defining
|
| 262 |
+
# the region that the line belongs to
|
| 263 |
+
if iou == 0:
|
| 264 |
+
reg_id = self.get_dist(polygon, regions)
|
| 265 |
+
|
| 266 |
+
if (len(lines['max_min']) - 1) >= i:
|
| 267 |
+
max_min = lines['max_min'][i]
|
| 268 |
+
|
| 269 |
+
if (len(lines['confs']) - 1) >= i:
|
| 270 |
+
conf = lines['confs'][i]
|
| 271 |
+
|
| 272 |
+
new_line = {'polygon': polygon, 'reg_id': reg_id, 'max_min': max_min, 'conf': conf}
|
| 273 |
+
lines_list.append(new_line)
|
| 274 |
+
return lines_list
|
| 275 |
+
|
| 276 |
+
def order_regions_lines(self, lines, regions):
|
| 277 |
+
"""Function for ordering line predictions inside each region."""
|
| 278 |
+
regions_with_rows = []
|
| 279 |
+
region_max_mins = []
|
| 280 |
+
for i, region in enumerate(regions):
|
| 281 |
+
line_max_mins = []
|
| 282 |
+
line_confs = []
|
| 283 |
+
line_polygons = []
|
| 284 |
+
for line in lines:
|
| 285 |
+
if line['reg_id'] == region['id']:
|
| 286 |
+
line_max_mins.append(line['max_min'])
|
| 287 |
+
line_confs.append(line['conf'])
|
| 288 |
+
line_polygons.append(line['polygon'])
|
| 289 |
+
if line_polygons:
|
| 290 |
+
# If one or more lines are connected to a region, line order inside the region is defined
|
| 291 |
+
# and the predicted text lines are joined in the same python dict
|
| 292 |
+
line_order = self.order_poly.order(line_max_mins)
|
| 293 |
+
line_polygons = [line_polygons[i] for i in line_order]
|
| 294 |
+
line_confs = [line_confs[i] for i in line_order]
|
| 295 |
+
new_region = {'region_coords': region['coords'],
|
| 296 |
+
'region_name': region['name'],
|
| 297 |
+
'lines': line_polygons,
|
| 298 |
+
'line_confs': line_confs,
|
| 299 |
+
'region_conf': region['conf'],
|
| 300 |
+
'img_shape': region['img_shape']}
|
| 301 |
+
region_max_mins.append(region['max_min'])
|
| 302 |
+
regions_with_rows.append(new_region)
|
| 303 |
+
else:
|
| 304 |
+
continue
|
| 305 |
+
# Creates an ordering of the detected regions based on their polygon coordinates
|
| 306 |
+
if self.order_regions:
|
| 307 |
+
region_order = self.order_poly.order(region_max_mins)
|
| 308 |
+
regions_with_rows = [regions_with_rows[i] for i in region_order]
|
| 309 |
+
|
| 310 |
+
return regions_with_rows
|
| 311 |
+
|
| 312 |
+
def get_default_region(self, image):
|
| 313 |
+
"""Function for creating a default region if no regions are detected."""
|
| 314 |
+
w, h = image.size
|
| 315 |
+
region = {'coords': [[0.0, 0.0], [w, 0.0], [w, h], [0.0, h]],
|
| 316 |
+
'max_min': [w, 0.0, h, 0.0],
|
| 317 |
+
'class': '0',
|
| 318 |
+
'name': "paragraph",
|
| 319 |
+
'conf': 0.0,
|
| 320 |
+
'id': '0',
|
| 321 |
+
'img_shape': (h, w)}
|
| 322 |
+
return [region]
|
| 323 |
+
|
| 324 |
+
def get_segmentation(self, image):
|
| 325 |
+
"""Segment input image into ordered text lines or ordered text regions and text lines."""
|
| 326 |
+
line_preds = self.get_line_preds(image)
|
| 327 |
+
if line_preds:
|
| 328 |
+
# If region detection model is defined, text regions and text lines are detected
|
| 329 |
+
region_preds = self.get_region_preds(image)
|
| 330 |
+
if not region_preds:
|
| 331 |
+
region_preds = self.get_default_region(image)
|
| 332 |
+
print(f'No regions detected from image {image}')
|
| 333 |
+
lines_with_regions = self.get_line_regions(line_preds, region_preds)
|
| 334 |
+
ordered_regions = self.order_regions_lines(lines_with_regions, region_preds)
|
| 335 |
+
return ordered_regions
|
| 336 |
+
else:
|
| 337 |
+
print(f'No text lines detected from image {image}')
|
| 338 |
+
return None
|
| 339 |
+
|
| 340 |
+
|