App init
Browse files- src/streamlit_app.py +321 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,323 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
}
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from peft import PeftModel
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 6 |
+
import io
|
| 7 |
+
import base64
|
| 8 |
+
import textwrap
|
| 9 |
+
import urllib.parse
|
| 10 |
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def load_model():
|
| 13 |
+
"""Load and cache the model"""
|
| 14 |
+
base_model = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 15 |
+
adapter_model = "phxdev/corporate-synergy-bot-7b"
|
| 16 |
+
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
+
base_model,
|
| 20 |
+
torch_dtype=torch.float16,
|
| 21 |
+
device_map="auto"
|
| 22 |
+
)
|
| 23 |
+
model = PeftModel.from_pretrained(model, adapter_model)
|
| 24 |
+
return tokenizer, model
|
| 25 |
+
|
| 26 |
+
tokenizer, model = load_model()
|
| 27 |
+
|
| 28 |
+
def transform_text(text, mode="To Corporate", domain="general", seniority="mid"):
|
| 29 |
+
"""Transform text between casual and corporate speak"""
|
| 30 |
+
|
| 31 |
+
if mode == "To Corporate":
|
| 32 |
+
instruction = f"Transform to {domain} corporate speak (seniority: {seniority})"
|
| 33 |
+
else:
|
| 34 |
+
instruction = "Translate corporate speak to plain English"
|
| 35 |
+
|
| 36 |
+
prompt = f"""### Instruction: {instruction}
|
| 37 |
+
### Input: {text}
|
| 38 |
+
### Response:"""
|
| 39 |
+
|
| 40 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model.generate(
|
| 44 |
+
**inputs,
|
| 45 |
+
max_new_tokens=150,
|
| 46 |
+
temperature=0.7,
|
| 47 |
+
top_p=0.9,
|
| 48 |
+
do_sample=True,
|
| 49 |
+
pad_token_id=tokenizer.eos_token_id
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 53 |
+
return response.split("### Response:")[-1].strip()
|
| 54 |
+
|
| 55 |
+
def create_shareable_card(input_text, output_text, mode, domain, seniority):
|
| 56 |
+
"""Create a shareable image card with the transformation"""
|
| 57 |
+
# Card dimensions
|
| 58 |
+
width, height = 800, 600
|
| 59 |
+
|
| 60 |
+
# Colors
|
| 61 |
+
bg_color = "#f8f9fa"
|
| 62 |
+
primary_color = "#2c3e50"
|
| 63 |
+
secondary_color = "#3498db"
|
| 64 |
+
text_color = "#2c3e50"
|
| 65 |
+
|
| 66 |
+
# Create image
|
| 67 |
+
img = Image.new('RGB', (width, height), bg_color)
|
| 68 |
+
draw = ImageDraw.Draw(img)
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
# Try to load a nicer font
|
| 72 |
+
title_font = ImageFont.truetype("arial.ttf", 28)
|
| 73 |
+
subtitle_font = ImageFont.truetype("arial.ttf", 18)
|
| 74 |
+
text_font = ImageFont.truetype("arial.ttf", 16)
|
| 75 |
+
small_font = ImageFont.truetype("arial.ttf", 14)
|
| 76 |
+
except:
|
| 77 |
+
# Fallback to default font
|
| 78 |
+
title_font = ImageFont.load_default()
|
| 79 |
+
subtitle_font = ImageFont.load_default()
|
| 80 |
+
text_font = ImageFont.load_default()
|
| 81 |
+
small_font = ImageFont.load_default()
|
| 82 |
+
|
| 83 |
+
# Title
|
| 84 |
+
title = "π’ Corporate Synergy Bot"
|
| 85 |
+
title_bbox = draw.textbbox((0, 0), title, font=title_font)
|
| 86 |
+
title_width = title_bbox[2] - title_bbox[0]
|
| 87 |
+
draw.text(((width - title_width) // 2, 30), title, fill=primary_color, font=title_font)
|
| 88 |
+
|
| 89 |
+
# Mode indicator
|
| 90 |
+
mode_text = f"{mode} β’ {domain.title()} β’ {seniority.title()}"
|
| 91 |
+
mode_bbox = draw.textbbox((0, 0), mode_text, font=subtitle_font)
|
| 92 |
+
mode_width = mode_bbox[2] - mode_bbox[0]
|
| 93 |
+
draw.text(((width - mode_width) // 2, 80), mode_text, fill=secondary_color, font=subtitle_font)
|
| 94 |
+
|
| 95 |
+
# Input section
|
| 96 |
+
draw.text((50, 140), "INPUT:", fill=primary_color, font=subtitle_font)
|
| 97 |
+
|
| 98 |
+
# Wrap input text
|
| 99 |
+
input_lines = textwrap.wrap(input_text, width=70)
|
| 100 |
+
y_pos = 170
|
| 101 |
+
for line in input_lines[:4]: # Max 4 lines
|
| 102 |
+
draw.text((50, y_pos), line, fill=text_color, font=text_font)
|
| 103 |
+
y_pos += 25
|
| 104 |
+
|
| 105 |
+
# Arrow
|
| 106 |
+
arrow = "β¬οΈ"
|
| 107 |
+
arrow_bbox = draw.textbbox((0, 0), arrow, font=title_font)
|
| 108 |
+
arrow_width = arrow_bbox[2] - arrow_bbox[0]
|
| 109 |
+
draw.text(((width - arrow_width) // 2, y_pos + 20), arrow, fill=secondary_color, font=title_font)
|
| 110 |
+
|
| 111 |
+
# Output section
|
| 112 |
+
y_pos += 80
|
| 113 |
+
draw.text((50, y_pos), "OUTPUT:", fill=primary_color, font=subtitle_font)
|
| 114 |
+
|
| 115 |
+
# Wrap output text
|
| 116 |
+
output_lines = textwrap.wrap(output_text, width=70)
|
| 117 |
+
y_pos += 30
|
| 118 |
+
for line in output_lines[:4]: # Max 4 lines
|
| 119 |
+
draw.text((50, y_pos), line, fill=text_color, font=text_font)
|
| 120 |
+
y_pos += 25
|
| 121 |
+
|
| 122 |
+
# Footer
|
| 123 |
+
footer_text = "Generated with Corporate Synergy Bot 7B"
|
| 124 |
+
footer_bbox = draw.textbbox((0, 0), footer_text, font=small_font)
|
| 125 |
+
footer_width = footer_bbox[2] - footer_bbox[0]
|
| 126 |
+
draw.text(((width - footer_width) // 2, height - 40), footer_text, fill=secondary_color, font=small_font)
|
| 127 |
+
|
| 128 |
+
return img
|
| 129 |
+
|
| 130 |
+
def generate_linkedin_post_text(input_text, output_text, mode, domain):
|
| 131 |
+
"""Generate LinkedIn post text"""
|
| 132 |
+
if mode == "To Corporate":
|
| 133 |
+
post = f"""π’ Transform your communication with AI!
|
| 134 |
+
|
| 135 |
+
From casual: "{input_text}"
|
| 136 |
+
To professional: "{output_text}"
|
| 137 |
+
|
| 138 |
+
#{domain}Career #ProfessionalCommunication #CorporateSpeak #AI #WorkplaceCommunication #ProfessionalDevelopment
|
| 139 |
+
|
| 140 |
+
Try it yourself with Corporate Synergy Bot 7B! π"""
|
| 141 |
+
else:
|
| 142 |
+
post = f"""π¬ Decode corporate jargon with AI!
|
| 143 |
+
|
| 144 |
+
From corporate: "{input_text}"
|
| 145 |
+
To plain English: "{output_text}"
|
| 146 |
+
|
| 147 |
+
#ClearCommunication #CorporateJargon #WorkplaceCommunication #AI #ProfessionalDevelopment #PlainEnglish
|
| 148 |
+
|
| 149 |
+
Cut through the corporate speak with Corporate Synergy Bot 7B! β¨"""
|
| 150 |
+
|
| 151 |
+
return post
|
| 152 |
+
|
| 153 |
+
# Streamlit interface
|
| 154 |
+
st.set_page_config(
|
| 155 |
+
page_title="Corporate Synergy Bot 7B",
|
| 156 |
+
page_icon="π’",
|
| 157 |
+
layout="wide"
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
st.title("π’ Corporate Synergy Bot 7B")
|
| 161 |
+
st.markdown("""
|
| 162 |
+
Transform casual language into professional corporate communication or decode corporate jargon back to plain English.
|
| 163 |
+
|
| 164 |
+
Powered by fine-tuned Mistral-7B with LoRA.
|
| 165 |
+
""")
|
| 166 |
+
|
| 167 |
+
col1, col2 = st.columns(2)
|
| 168 |
+
|
| 169 |
+
with col1:
|
| 170 |
+
st.subheader("Input")
|
| 171 |
+
input_text = st.text_area(
|
| 172 |
+
"Input Text",
|
| 173 |
+
placeholder="Enter text to transform...",
|
| 174 |
+
height=100,
|
| 175 |
+
key="input_text"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
mode = st.radio(
|
| 179 |
+
"Transformation Mode",
|
| 180 |
+
["To Corporate", "To Plain English"],
|
| 181 |
+
index=0,
|
| 182 |
+
key="mode"
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
col1a, col1b = st.columns(2)
|
| 186 |
+
with col1a:
|
| 187 |
+
domain = st.selectbox(
|
| 188 |
+
"Domain (for corporate mode)",
|
| 189 |
+
["general", "tech", "finance", "consulting", "healthcare", "retail"],
|
| 190 |
+
index=0,
|
| 191 |
+
key="domain"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
with col1b:
|
| 195 |
+
seniority = st.selectbox(
|
| 196 |
+
"Seniority Level",
|
| 197 |
+
["junior", "mid", "senior", "executive"],
|
| 198 |
+
index=1,
|
| 199 |
+
key="seniority"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
transform_btn = st.button("Transform", type="primary", use_container_width=True)
|
| 203 |
+
|
| 204 |
+
with col2:
|
| 205 |
+
st.subheader("Output")
|
| 206 |
+
|
| 207 |
+
if transform_btn and input_text:
|
| 208 |
+
with st.spinner("Transforming..."):
|
| 209 |
+
output_text = transform_text(input_text, mode, domain, seniority)
|
| 210 |
+
st.text_area(
|
| 211 |
+
"Transformed Text",
|
| 212 |
+
value=output_text,
|
| 213 |
+
height=100,
|
| 214 |
+
key="output_text"
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Store the output for card generation
|
| 218 |
+
st.session_state.last_output = output_text
|
| 219 |
+
st.session_state.last_input = input_text
|
| 220 |
+
st.session_state.last_mode = mode
|
| 221 |
+
st.session_state.last_domain = domain
|
| 222 |
+
st.session_state.last_seniority = seniority
|
| 223 |
+
elif "last_output" in st.session_state:
|
| 224 |
+
st.text_area(
|
| 225 |
+
"Transformed Text",
|
| 226 |
+
value=st.session_state.last_output,
|
| 227 |
+
height=100,
|
| 228 |
+
key="output_display"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Social sharing section
|
| 232 |
+
if "last_output" in st.session_state and "last_input" in st.session_state:
|
| 233 |
+
st.subheader("π± Share Your Transformation")
|
| 234 |
+
|
| 235 |
+
col_share1, col_share2 = st.columns(2)
|
| 236 |
+
|
| 237 |
+
with col_share1:
|
| 238 |
+
if st.button("π¨ Generate Shareable Card", use_container_width=True):
|
| 239 |
+
with st.spinner("Creating your card..."):
|
| 240 |
+
card_img = create_shareable_card(
|
| 241 |
+
st.session_state.last_input,
|
| 242 |
+
st.session_state.last_output,
|
| 243 |
+
st.session_state.last_mode,
|
| 244 |
+
st.session_state.last_domain,
|
| 245 |
+
st.session_state.last_seniority
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# Convert to bytes for download
|
| 249 |
+
img_buffer = io.BytesIO()
|
| 250 |
+
card_img.save(img_buffer, format='PNG')
|
| 251 |
+
img_buffer.seek(0)
|
| 252 |
+
|
| 253 |
+
# Display the card
|
| 254 |
+
st.image(card_img, caption="Your shareable card", use_column_width=True)
|
| 255 |
+
|
| 256 |
+
# Download button
|
| 257 |
+
st.download_button(
|
| 258 |
+
label="πΎ Download Card",
|
| 259 |
+
data=img_buffer.getvalue(),
|
| 260 |
+
file_name="corporate_synergy_transformation.png",
|
| 261 |
+
mime="image/png",
|
| 262 |
+
use_container_width=True
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
with col_share2:
|
| 266 |
+
if st.button("π Generate LinkedIn Post", use_container_width=True):
|
| 267 |
+
linkedin_text = generate_linkedin_post_text(
|
| 268 |
+
st.session_state.last_input,
|
| 269 |
+
st.session_state.last_output,
|
| 270 |
+
st.session_state.last_mode,
|
| 271 |
+
st.session_state.last_domain
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
st.text_area(
|
| 275 |
+
"LinkedIn Post Text",
|
| 276 |
+
value=linkedin_text,
|
| 277 |
+
height=200,
|
| 278 |
+
key="linkedin_post"
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# LinkedIn share button
|
| 282 |
+
linkedin_url = f"https://www.linkedin.com/sharing/share-offsite/?url={urllib.parse.quote('https://huggingface.co/spaces/phxdev/corporate-synergy-bot')}&summary={urllib.parse.quote(linkedin_text[:200])}"
|
| 283 |
+
|
| 284 |
+
st.markdown(f"""
|
| 285 |
+
<a href="{linkedin_url}" target="_blank">
|
| 286 |
+
<button style="
|
| 287 |
+
background-color: #0077B5;
|
| 288 |
+
color: white;
|
| 289 |
+
padding: 10px 20px;
|
| 290 |
+
border: none;
|
| 291 |
+
border-radius: 5px;
|
| 292 |
+
cursor: pointer;
|
| 293 |
+
width: 100%;
|
| 294 |
+
font-size: 16px;
|
| 295 |
+
text-decoration: none;
|
| 296 |
+
">
|
| 297 |
+
π Share on LinkedIn
|
| 298 |
+
</button>
|
| 299 |
+
</a>
|
| 300 |
+
""", unsafe_allow_html=True)
|
| 301 |
+
|
| 302 |
+
# Examples section
|
| 303 |
+
st.subheader("Examples")
|
| 304 |
+
examples = [
|
| 305 |
+
["let's meet tomorrow", "To Corporate", "general", "mid"],
|
| 306 |
+
["I need help with this project", "To Corporate", "tech", "senior"],
|
| 307 |
+
["good job on the presentation", "To Corporate", "consulting", "executive"],
|
| 308 |
+
["We need to leverage our synergies to maximize stakeholder value", "To Plain English", "general", "mid"],
|
| 309 |
+
["Let's circle back on the deliverables", "To Plain English", "general", "mid"],
|
| 310 |
+
]
|
| 311 |
+
|
| 312 |
+
example_cols = st.columns(len(examples))
|
| 313 |
+
for i, (text, ex_mode, ex_domain, ex_seniority) in enumerate(examples):
|
| 314 |
+
with example_cols[i]:
|
| 315 |
+
if st.button(f"Example {i+1}", key=f"example_{i}"):
|
| 316 |
+
st.session_state.input_text = text
|
| 317 |
+
st.session_state.mode = ex_mode
|
| 318 |
+
st.session_state.domain = ex_domain
|
| 319 |
+
st.session_state.seniority = ex_seniority
|
| 320 |
+
st.rerun()
|
| 321 |
+
|
| 322 |
+
if __name__ == "__main__":
|
| 323 |
+
pass
|