Spaces:
Running
Running
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
a1e2ec1
| import os, io, sys, inspect, statistics, json | |
| from statistics import mean | |
| # from google.cloud import vision, storage | |
| from google.cloud import vision | |
| from google.cloud import vision_v1p3beta1 as vision_beta | |
| from PIL import Image, ImageDraw, ImageFont | |
| import colorsys | |
| from tqdm import tqdm | |
| from google.oauth2 import service_account | |
| currentdir = os.path.dirname(os.path.abspath( | |
| inspect.getfile(inspect.currentframe()))) | |
| parentdir = os.path.dirname(currentdir) | |
| sys.path.append(parentdir) | |
| ''' | |
| @misc{li2021trocr, | |
| title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, | |
| author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, | |
| year={2021}, | |
| eprint={2109.10282}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CL} | |
| } | |
| ''' | |
| class OCRGoogle: | |
| BBOX_COLOR = "black" | |
| def __init__(self, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device): | |
| self.is_hf = is_hf | |
| self.path = path | |
| self.cfg = cfg | |
| self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR'] | |
| self.OCR_option = self.cfg['leafmachine']['project']['OCR_option'] | |
| # Initialize TrOCR components | |
| self.trOCR_model_version = trOCR_model_version | |
| self.trOCR_processor = trOCR_processor | |
| self.trOCR_model = trOCR_model | |
| self.device = device | |
| self.hand_cleaned_text = None | |
| self.hand_organized_text = None | |
| self.hand_bounds = None | |
| self.hand_bounds_word = None | |
| self.hand_bounds_flat = None | |
| self.hand_text_to_box_mapping = None | |
| self.hand_height = None | |
| self.hand_confidences = None | |
| self.hand_characters = None | |
| self.normal_cleaned_text = None | |
| self.normal_organized_text = None | |
| self.normal_bounds = None | |
| self.normal_bounds_word = None | |
| self.normal_text_to_box_mapping = None | |
| self.normal_bounds_flat = None | |
| self.normal_height = None | |
| self.normal_confidences = None | |
| self.normal_characters = None | |
| self.trOCR_texts = None | |
| self.trOCR_text_to_box_mapping = None | |
| self.trOCR_bounds_flat = None | |
| self.trOCR_height = None | |
| self.trOCR_confidences = None | |
| self.trOCR_characters = None | |
| self.set_client() | |
| def set_client(self): | |
| if self.is_hf: | |
| service_account_json_str = os.getenv('google_service_account_json') | |
| if not service_account_json_str: | |
| print("Service account JSON not found in environment variables.") | |
| return False | |
| # Convert JSON string to a dictionary | |
| service_account_info = json.loads(service_account_json_str) | |
| # Create credentials from the service account info | |
| credentials = service_account.Credentials.from_service_account_info(service_account_info) | |
| # Initialize the client with the credentials | |
| self.client_beta = vision_beta.ImageAnnotatorClient(credentials=credentials) | |
| self.client = vision.ImageAnnotatorClient(credentials=credentials) | |
| else: | |
| self.client_beta = vision_beta.ImageAnnotatorClient() | |
| self.client = vision.ImageAnnotatorClient() | |
| def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger): | |
| CONFIDENCES = 0.80 | |
| MAX_NEW_TOKENS = 50 | |
| self.OCR_JSON_to_file = {} | |
| if not do_use_trOCR: | |
| if self.OCR_option in ['normal',]: | |
| self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text | |
| logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}") | |
| return f"Google_OCR_Standard:\n{self.normal_organized_text}" | |
| if self.OCR_option in ['hand',]: | |
| self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text | |
| logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}") | |
| return f"Google_OCR_Handwriting:\n{self.hand_organized_text}" | |
| if self.OCR_option in ['both',]: | |
| logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}") | |
| return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}" | |
| else: | |
| logger.info(f'Supplementing with trOCR') | |
| self.trOCR_texts = [] | |
| original_image = Image.open(self.path).convert("RGB") | |
| if self.OCR_option in ['normal',]: | |
| available_bounds = self.normal_bounds_word | |
| elif self.OCR_option in ['hand',]: | |
| available_bounds = self.hand_bounds_word | |
| elif self.OCR_option in ['both',]: | |
| available_bounds = self.hand_bounds_word | |
| else: | |
| raise | |
| text_to_box_mapping = [] | |
| characters = [] | |
| height = [] | |
| confidences = [] | |
| for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"): | |
| vertices = bound["vertices"] | |
| left = min([v["x"] for v in vertices]) | |
| top = min([v["y"] for v in vertices]) | |
| right = max([v["x"] for v in vertices]) | |
| bottom = max([v["y"] for v in vertices]) | |
| # Crop image based on Google's bounding box | |
| cropped_image = original_image.crop((left, top, right, bottom)) | |
| pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values | |
| # Move pixel values to the appropriate device | |
| pixel_values = pixel_values.to(self.device) | |
| generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS) | |
| extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| self.trOCR_texts.append(extracted_text) | |
| # For plotting | |
| word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices) | |
| num_symbols = len(extracted_text) | |
| Yw = max(vertex.get('y') for vertex in vertices) | |
| Yo = Yw - min(vertex.get('y') for vertex in vertices) | |
| X = word_length / num_symbols if num_symbols > 0 else 0 | |
| H = int(X+(Yo*0.1)) | |
| height.append(H) | |
| map_dict = { | |
| "vertices": vertices, | |
| "text": extracted_text # Use the text extracted by trOCR | |
| } | |
| text_to_box_mapping.append(map_dict) | |
| characters.append(extracted_text) | |
| confidences.append(CONFIDENCES) | |
| median_height = statistics.median(height) if height else 0 | |
| median_heights = [median_height * 1.5] * len(characters) | |
| self.trOCR_texts = ' '.join(self.trOCR_texts) | |
| self.trOCR_text_to_box_mapping = text_to_box_mapping | |
| self.trOCR_bounds_flat = available_bounds | |
| self.trOCR_height = median_heights | |
| self.trOCR_confidences = confidences | |
| self.trOCR_characters = characters | |
| if self.OCR_option in ['normal',]: | |
| self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text | |
| self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts | |
| logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}") | |
| return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}" | |
| if self.OCR_option in ['hand',]: | |
| self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text | |
| self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts | |
| logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}") | |
| return f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}" | |
| if self.OCR_option in ['both',]: | |
| self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text | |
| self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text | |
| self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts | |
| logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}") | |
| return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}" | |
| else: | |
| raise | |
| def confidence_to_color(confidence): | |
| hue = (confidence - 0.5) * 120 / 0.5 | |
| r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1) | |
| return (int(r*255), int(g*255), int(b*255)) | |
| def render_text_on_black_image(self, option): | |
| bounds_flat = getattr(self, f'{option}_bounds_flat', []) | |
| heights = getattr(self, f'{option}_height', []) | |
| confidences = getattr(self, f'{option}_confidences', []) | |
| characters = getattr(self, f'{option}_characters', []) | |
| original_image = Image.open(self.path) | |
| width, height = original_image.size | |
| black_image = Image.new("RGB", (width, height), "black") | |
| draw = ImageDraw.Draw(black_image) | |
| for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters): | |
| font_size = int(char_height) | |
| font = ImageFont.load_default().font_variant(size=font_size) | |
| if option == 'trOCR': | |
| color = (0, 170, 255) | |
| else: | |
| color = OCRGoogle.confidence_to_color(confidence) | |
| position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height) | |
| draw.text(position, character, fill=color, font=font) | |
| return black_image | |
| def merge_images(self, image1, image2): | |
| width1, height1 = image1.size | |
| width2, height2 = image2.size | |
| merged_image = Image.new("RGB", (width1 + width2, max([height1, height2]))) | |
| merged_image.paste(image1, (0, 0)) | |
| merged_image.paste(image2, (width1, 0)) | |
| return merged_image | |
| def draw_boxes(self, option): | |
| bounds = getattr(self, f'{option}_bounds', []) | |
| bounds_word = getattr(self, f'{option}_bounds_word', []) | |
| confidences = getattr(self, f'{option}_confidences', []) | |
| draw = ImageDraw.Draw(self.image) | |
| width, height = self.image.size | |
| if min([width, height]) > 4000: | |
| line_width_thick = int((width + height) / 2 * 0.0025) # Adjust line width for character level | |
| line_width_thin = 1 | |
| else: | |
| line_width_thick = int((width + height) / 2 * 0.005) # Adjust line width for character level | |
| line_width_thin = 1 #int((width + height) / 2 * 0.001) | |
| for bound in bounds_word: | |
| draw.polygon( | |
| [ | |
| bound["vertices"][0]["x"], bound["vertices"][0]["y"], | |
| bound["vertices"][1]["x"], bound["vertices"][1]["y"], | |
| bound["vertices"][2]["x"], bound["vertices"][2]["y"], | |
| bound["vertices"][3]["x"], bound["vertices"][3]["y"], | |
| ], | |
| outline=OCRGoogle.BBOX_COLOR, | |
| width=line_width_thin | |
| ) | |
| # Draw a line segment at the bottom of each handwritten character | |
| for bound, confidence in zip(bounds, confidences): | |
| color = OCRGoogle.confidence_to_color(confidence) | |
| # Use the bottom two vertices of the bounding box for the line | |
| bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick) | |
| bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick) | |
| draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick) | |
| return self.image | |
| def detect_text(self): | |
| with io.open(self.path, 'rb') as image_file: | |
| content = image_file.read() | |
| image = vision.Image(content=content) | |
| response = self.client.document_text_detection(image=image) | |
| texts = response.text_annotations | |
| if response.error.message: | |
| raise Exception( | |
| '{}\nFor more info on error messages, check: ' | |
| 'https://cloud.google.com/apis/design/errors'.format( | |
| response.error.message)) | |
| bounds = [] | |
| bounds_word = [] | |
| text_to_box_mapping = [] | |
| bounds_flat = [] | |
| height_flat = [] | |
| confidences = [] | |
| characters = [] | |
| organized_text = "" | |
| paragraph_count = 0 | |
| for text in texts[1:]: | |
| vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices] | |
| map_dict = { | |
| "vertices": vertices, | |
| "text": text.description | |
| } | |
| text_to_box_mapping.append(map_dict) | |
| for page in response.full_text_annotation.pages: | |
| for block in page.blocks: | |
| # paragraph_count += 1 | |
| # organized_text += f'OCR_paragraph_{paragraph_count}:\n' # Add paragraph label | |
| for paragraph in block.paragraphs: | |
| avg_H_list = [] | |
| for word in paragraph.words: | |
| Yw = max(vertex.y for vertex in word.bounding_box.vertices) | |
| # Calculate the width of the word and divide by the number of symbols | |
| word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices) | |
| num_symbols = len(word.symbols) | |
| if num_symbols <= 3: | |
| H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices)) | |
| else: | |
| Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices) | |
| X = word_length / num_symbols if num_symbols > 0 else 0 | |
| H = int(X+(Yo*0.1)) | |
| avg_H_list.append(H) | |
| avg_H = int(mean(avg_H_list)) | |
| words_in_para = [] | |
| for word in paragraph.words: | |
| # Get word-level bounding box | |
| bound_word_dict = { | |
| "vertices": [ | |
| {"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices | |
| ] | |
| } | |
| bounds_word.append(bound_word_dict) | |
| Y = max(vertex.y for vertex in word.bounding_box.vertices) | |
| word_x_start = min(vertex.x for vertex in word.bounding_box.vertices) | |
| word_x_end = max(vertex.x for vertex in word.bounding_box.vertices) | |
| num_symbols = len(word.symbols) | |
| symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0 | |
| current_x_position = word_x_start | |
| characters_ind = [] | |
| for symbol in word.symbols: | |
| bound_dict = { | |
| "vertices": [ | |
| {"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices | |
| ] | |
| } | |
| bounds.append(bound_dict) | |
| # Create flat bounds with adjusted x position | |
| bounds_flat_dict = { | |
| "vertices": [ | |
| {"x": current_x_position, "y": Y}, | |
| {"x": current_x_position + symbol_width, "y": Y} | |
| ] | |
| } | |
| bounds_flat.append(bounds_flat_dict) | |
| current_x_position += symbol_width | |
| height_flat.append(avg_H) | |
| confidences.append(round(symbol.confidence, 4)) | |
| characters_ind.append(symbol.text) | |
| characters.append(symbol.text) | |
| words_in_para.append(''.join(characters_ind)) | |
| paragraph_text = ' '.join(words_in_para) # Join words in paragraph | |
| organized_text += paragraph_text + ' ' #+ '\n' | |
| # median_height = statistics.median(height_flat) if height_flat else 0 | |
| # median_heights = [median_height] * len(characters) | |
| self.normal_cleaned_text = texts[0].description if texts else '' | |
| self.normal_organized_text = organized_text | |
| self.normal_bounds = bounds | |
| self.normal_bounds_word = bounds_word | |
| self.normal_text_to_box_mapping = text_to_box_mapping | |
| self.normal_bounds_flat = bounds_flat | |
| # self.normal_height = median_heights #height_flat | |
| self.normal_height = height_flat | |
| self.normal_confidences = confidences | |
| self.normal_characters = characters | |
| def detect_handwritten_ocr(self): | |
| with open(self.path, "rb") as image_file: | |
| content = image_file.read() | |
| image = vision_beta.Image(content=content) | |
| image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"]) | |
| response = self.client_beta.document_text_detection(image=image, image_context=image_context) | |
| texts = response.text_annotations | |
| if response.error.message: | |
| raise Exception( | |
| "{}\nFor more info on error messages, check: " | |
| "https://cloud.google.com/apis/design/errors".format(response.error.message) | |
| ) | |
| bounds = [] | |
| bounds_word = [] | |
| bounds_flat = [] | |
| height_flat = [] | |
| confidences = [] | |
| characters = [] | |
| organized_text = "" | |
| paragraph_count = 0 | |
| text_to_box_mapping = [] | |
| for text in texts[1:]: | |
| vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices] | |
| map_dict = { | |
| "vertices": vertices, | |
| "text": text.description | |
| } | |
| text_to_box_mapping.append(map_dict) | |
| for page in response.full_text_annotation.pages: | |
| for block in page.blocks: | |
| # paragraph_count += 1 | |
| # organized_text += f'\nOCR_paragraph_{paragraph_count}:\n' # Add paragraph label | |
| for paragraph in block.paragraphs: | |
| avg_H_list = [] | |
| for word in paragraph.words: | |
| Yw = max(vertex.y for vertex in word.bounding_box.vertices) | |
| # Calculate the width of the word and divide by the number of symbols | |
| word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices) | |
| num_symbols = len(word.symbols) | |
| if num_symbols <= 3: | |
| H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices)) | |
| else: | |
| Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices) | |
| X = word_length / num_symbols if num_symbols > 0 else 0 | |
| H = int(X+(Yo*0.1)) | |
| avg_H_list.append(H) | |
| avg_H = int(mean(avg_H_list)) | |
| words_in_para = [] | |
| for word in paragraph.words: | |
| # Get word-level bounding box | |
| bound_word_dict = { | |
| "vertices": [ | |
| {"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices | |
| ] | |
| } | |
| bounds_word.append(bound_word_dict) | |
| Y = max(vertex.y for vertex in word.bounding_box.vertices) | |
| word_x_start = min(vertex.x for vertex in word.bounding_box.vertices) | |
| word_x_end = max(vertex.x for vertex in word.bounding_box.vertices) | |
| num_symbols = len(word.symbols) | |
| symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0 | |
| current_x_position = word_x_start | |
| characters_ind = [] | |
| for symbol in word.symbols: | |
| bound_dict = { | |
| "vertices": [ | |
| {"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices | |
| ] | |
| } | |
| bounds.append(bound_dict) | |
| # Create flat bounds with adjusted x position | |
| bounds_flat_dict = { | |
| "vertices": [ | |
| {"x": current_x_position, "y": Y}, | |
| {"x": current_x_position + symbol_width, "y": Y} | |
| ] | |
| } | |
| bounds_flat.append(bounds_flat_dict) | |
| current_x_position += symbol_width | |
| height_flat.append(avg_H) | |
| confidences.append(round(symbol.confidence, 4)) | |
| characters_ind.append(symbol.text) | |
| characters.append(symbol.text) | |
| words_in_para.append(''.join(characters_ind)) | |
| paragraph_text = ' '.join(words_in_para) # Join words in paragraph | |
| organized_text += paragraph_text + ' ' #+ '\n' | |
| # median_height = statistics.median(height_flat) if height_flat else 0 | |
| # median_heights = [median_height] * len(characters) | |
| self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else '' | |
| self.hand_organized_text = organized_text | |
| self.hand_bounds = bounds | |
| self.hand_bounds_word = bounds_word | |
| self.hand_bounds_flat = bounds_flat | |
| self.hand_text_to_box_mapping = text_to_box_mapping | |
| # self.hand_height = median_heights #height_flat | |
| self.hand_height = height_flat | |
| self.hand_confidences = confidences | |
| self.hand_characters = characters | |
| def process_image(self, do_create_OCR_helper_image, logger): | |
| if self.OCR_option in ['normal', 'both']: | |
| self.detect_text() | |
| if self.OCR_option in ['hand', 'both']: | |
| self.detect_handwritten_ocr() | |
| if self.OCR_option not in ['normal', 'hand', 'both']: | |
| self.OCR_option = 'both' | |
| self.detect_text() | |
| self.detect_handwritten_ocr() | |
| ### Optionally add trOCR to the self.OCR for additional context | |
| self.OCR = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger) | |
| if do_create_OCR_helper_image: | |
| self.image = Image.open(self.path) | |
| if self.OCR_option in ['normal', 'both']: | |
| image_with_boxes_normal = self.draw_boxes('normal') | |
| text_image_normal = self.render_text_on_black_image('normal') | |
| self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal) | |
| if self.OCR_option in ['hand', 'both']: | |
| image_with_boxes_hand = self.draw_boxes('hand') | |
| text_image_hand = self.render_text_on_black_image('hand') | |
| self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand) | |
| if self.do_use_trOCR: | |
| text_image_trOCR = self.render_text_on_black_image('trOCR') | |
| ### Merge final overlay image | |
| ### [original, normal bboxes, normal text] | |
| if self.OCR_option in ['normal']: | |
| self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal) | |
| ### [original, hand bboxes, hand text] | |
| elif self.OCR_option in ['hand']: | |
| self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand) | |
| ### [original, normal bboxes, normal text, hand bboxes, hand text] | |
| else: | |
| self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand)) | |
| if self.do_use_trOCR: | |
| self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR) | |
| else: | |
| self.merged_image_normal = None | |
| self.merged_image_hand = None | |
| self.overlay_image = Image.open(self.path) | |
| ''' | |
| BBOX_COLOR = "black" # green cyan | |
| def render_text_on_black_image(image_path, handwritten_char_bounds_flat, handwritten_char_confidences, handwritten_char_heights, characters): | |
| # Load the original image to get its dimensions | |
| original_image = Image.open(image_path) | |
| width, height = original_image.size | |
| # Create a black image of the same size | |
| black_image = Image.new("RGB", (width, height), "black") | |
| draw = ImageDraw.Draw(black_image) | |
| # Loop through each character | |
| for bound, confidence, char_height, character in zip(handwritten_char_bounds_flat, handwritten_char_confidences, handwritten_char_heights, characters): | |
| # Determine the font size based on the height of the character | |
| font_size = int(char_height) | |
| font = ImageFont.load_default().font_variant(size=font_size) | |
| # Color of the character | |
| color = confidence_to_color(confidence) | |
| # Position of the text (using the bottom-left corner of the bounding box) | |
| position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height) | |
| # Draw the character | |
| draw.text(position, character, fill=color, font=font) | |
| return black_image | |
| def merge_images(image1, image2): | |
| # Assuming both images are of the same size | |
| width, height = image1.size | |
| merged_image = Image.new("RGB", (width * 2, height)) | |
| merged_image.paste(image1, (0, 0)) | |
| merged_image.paste(image2, (width, 0)) | |
| return merged_image | |
| def draw_boxes(image, bounds, color): | |
| if bounds: | |
| draw = ImageDraw.Draw(image) | |
| width, height = image.size | |
| line_width = int((width + height) / 2 * 0.001) # This sets the line width as 0.5% of the average dimension | |
| for bound in bounds: | |
| draw.polygon( | |
| [ | |
| bound["vertices"][0]["x"], bound["vertices"][0]["y"], | |
| bound["vertices"][1]["x"], bound["vertices"][1]["y"], | |
| bound["vertices"][2]["x"], bound["vertices"][2]["y"], | |
| bound["vertices"][3]["x"], bound["vertices"][3]["y"], | |
| ], | |
| outline=color, | |
| width=line_width | |
| ) | |
| return image | |
| def detect_text(path): | |
| client = vision.ImageAnnotatorClient() | |
| with io.open(path, 'rb') as image_file: | |
| content = image_file.read() | |
| image = vision.Image(content=content) | |
| response = client.document_text_detection(image=image) | |
| texts = response.text_annotations | |
| if response.error.message: | |
| raise Exception( | |
| '{}\nFor more info on error messages, check: ' | |
| 'https://cloud.google.com/apis/design/errors'.format( | |
| response.error.message)) | |
| # Extract bounding boxes | |
| bounds = [] | |
| text_to_box_mapping = {} | |
| for text in texts[1:]: # Skip the first entry, as it represents the entire detected text | |
| # Convert BoundingPoly to dictionary | |
| bound_dict = { | |
| "vertices": [ | |
| {"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices | |
| ] | |
| } | |
| bounds.append(bound_dict) | |
| text_to_box_mapping[str(bound_dict)] = text.description | |
| if texts: | |
| # cleaned_text = texts[0].description.replace("\n", " ").replace("\t", " ").replace("|", " ") | |
| cleaned_text = texts[0].description | |
| return cleaned_text, bounds, text_to_box_mapping | |
| else: | |
| return '', None, None | |
| def confidence_to_color(confidence): | |
| """Convert confidence level to a color ranging from red (low confidence) to green (high confidence).""" | |
| # Using HSL color space, where Hue varies from red to green | |
| hue = (confidence - 0.5) * 120 / 0.5 # Scale confidence to range 0-120 (red to green in HSL) | |
| r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1) # Convert to RGB | |
| return (int(r*255), int(g*255), int(b*255)) | |
| def overlay_boxes_on_image(path, typed_bounds, handwritten_char_bounds, handwritten_char_confidences, do_create_OCR_helper_image): | |
| if do_create_OCR_helper_image: | |
| image = Image.open(path) | |
| draw = ImageDraw.Draw(image) | |
| width, height = image.size | |
| line_width = int((width + height) / 2 * 0.005) # Adjust line width for character level | |
| # Draw boxes for typed text | |
| for bound in typed_bounds: | |
| draw.polygon( | |
| [ | |
| bound["vertices"][0]["x"], bound["vertices"][0]["y"], | |
| bound["vertices"][1]["x"], bound["vertices"][1]["y"], | |
| bound["vertices"][2]["x"], bound["vertices"][2]["y"], | |
| bound["vertices"][3]["x"], bound["vertices"][3]["y"], | |
| ], | |
| outline=BBOX_COLOR, | |
| width=1 | |
| ) | |
| # Draw a line segment at the bottom of each handwritten character | |
| for bound, confidence in zip(handwritten_char_bounds, handwritten_char_confidences): | |
| color = confidence_to_color(confidence) | |
| # Use the bottom two vertices of the bounding box for the line | |
| bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width) | |
| bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width) | |
| draw.line([bottom_left, bottom_right], fill=color, width=line_width) | |
| text_image = render_text_on_black_image(path, handwritten_char_bounds, handwritten_char_confidences) | |
| merged_image = merge_images(image, text_image) # Assuming 'overlayed_image' is the image with lines | |
| return merged_image | |
| else: | |
| return Image.open(path) | |
| def detect_handwritten_ocr(path): | |
| """Detects handwritten characters in a local image and returns their bounding boxes and confidence levels. | |
| Args: | |
| path: The path to the local file. | |
| Returns: | |
| A tuple of (text, bounding_boxes, confidences) | |
| """ | |
| client = vision_beta.ImageAnnotatorClient() | |
| with open(path, "rb") as image_file: | |
| content = image_file.read() | |
| image = vision_beta.Image(content=content) | |
| image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"]) | |
| response = client.document_text_detection(image=image, image_context=image_context) | |
| if response.error.message: | |
| raise Exception( | |
| "{}\nFor more info on error messages, check: " | |
| "https://cloud.google.com/apis/design/errors".format(response.error.message) | |
| ) | |
| bounds = [] | |
| bounds_flat = [] | |
| height_flat = [] | |
| confidences = [] | |
| character = [] | |
| for page in response.full_text_annotation.pages: | |
| for block in page.blocks: | |
| for paragraph in block.paragraphs: | |
| for word in paragraph.words: | |
| # Get the bottom Y-location (max Y) for the whole word | |
| Y = max(vertex.y for vertex in word.bounding_box.vertices) | |
| # Get the height of the word's bounding box | |
| H = Y - min(vertex.y for vertex in word.bounding_box.vertices) | |
| for symbol in word.symbols: | |
| # Collecting bounding box for each symbol | |
| bound_dict = { | |
| "vertices": [ | |
| {"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices | |
| ] | |
| } | |
| bounds.append(bound_dict) | |
| # Bounds with same bottom y height | |
| bounds_flat_dict = { | |
| "vertices": [ | |
| {"x": vertex.x, "y": Y} for vertex in symbol.bounding_box.vertices | |
| ] | |
| } | |
| bounds_flat.append(bounds_flat_dict) | |
| # Add the word's height | |
| height_flat.append(H) | |
| # Collecting confidence for each symbol | |
| symbol_confidence = round(symbol.confidence, 4) | |
| confidences.append(symbol_confidence) | |
| character.append(symbol.text) | |
| cleaned_text = response.full_text_annotation.text | |
| return cleaned_text, bounds, bounds_flat, height_flat, confidences, character | |
| def process_image(path, do_create_OCR_helper_image): | |
| typed_text, typed_bounds, _ = detect_text(path) | |
| handwritten_text, handwritten_bounds, _ = detect_handwritten_ocr(path) | |
| overlayed_image = overlay_boxes_on_image(path, typed_bounds, handwritten_bounds, do_create_OCR_helper_image) | |
| return typed_text, handwritten_text, overlayed_image | |
| ''' | |
| # ''' Google Vision''' | |
| # def detect_text(path): | |
| # """Detects text in the file located in the local filesystem.""" | |
| # client = vision.ImageAnnotatorClient() | |
| # with io.open(path, 'rb') as image_file: | |
| # content = image_file.read() | |
| # image = vision.Image(content=content) | |
| # response = client.document_text_detection(image=image) | |
| # texts = response.text_annotations | |
| # if response.error.message: | |
| # raise Exception( | |
| # '{}\nFor more info on error messages, check: ' | |
| # 'https://cloud.google.com/apis/design/errors'.format( | |
| # response.error.message)) | |
| # return texts[0].description if texts else '' | |