File size: 1,135 Bytes
e70c4cd
 
 
 
6e143c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"


import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-180b-chat"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)

def generate_headlines(topic):
    sequences = pipeline(
       f"Create at most 5 headlines that highlight {topic}. The headlines should be concise, attention-grabbing, and suitable for use in a news video.",
        max_length=200,
        do_sample=True,
        top_k=10,
        num_return_sequences=5,
        eos_token_id=tokenizer.eos_token_id,
    )
    headlines = [seq['generated_text'] for seq in sequences]
    return "\n".join(headlines)

iface = gr.Interface(
    fn=generate_headlines,
    inputs=gr.inputs.Textbox(placeholder="Enter the topic"),
    outputs="text",
    examples=[["Climate Change"], ["AI Innovations"], ["Space Exploration"]]
)

iface.launch()