import os os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache" import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-180b-chat" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) def generate_headlines(topic): sequences = pipeline( f"Create at most 5 headlines that highlight {topic}. The headlines should be concise, attention-grabbing, and suitable for use in a news video.", max_length=200, do_sample=True, top_k=10, num_return_sequences=5, eos_token_id=tokenizer.eos_token_id, ) headlines = [seq['generated_text'] for seq in sequences] return "\n".join(headlines) iface = gr.Interface( fn=generate_headlines, inputs=gr.inputs.Textbox(placeholder="Enter the topic"), outputs="text", examples=[["Climate Change"], ["AI Innovations"], ["Space Exploration"]] ) iface.launch()