PreviDengueAPI / municipal_predictor.py
GitHub Actions
Auto-deploy from GitHub
fc10025
import os
import json
import joblib
import numpy as np
import pandas as pd
from pathlib import Path
from datetime import timedelta
from io import BytesIO
import base64
import tensorflow as tf
from tensorflow.keras.utils import register_keras_serializable
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
plt.style.use('seaborn-v0_8-darkgrid')
@register_keras_serializable(package="Custom", name="asymmetric_mse")
def asymmetric_mse(y_true, y_pred):
penalty_factor = 10.0
error = y_true - y_pred
denom = tf.maximum(tf.abs(y_true), 1.0)
rel = tf.abs(error) / denom
penalty = tf.where(error > 0, 1.0 + penalty_factor * rel, 1.0)
loss = tf.square(error) * penalty
return tf.reduce_mean(loss)
class DenguePredictor:
def __init__(self, project_root=None, offline: bool = False, local_inference_path: str | None = None):
self.project_root = Path(project_root) if project_root else Path(__file__).resolve().parent
self.offline = bool(offline)
self.local_inference_path = Path(local_inference_path) if local_inference_path else None
self.sequence_length = 12
self.horizon = 6
self.year_min_train = 2014
self.year_max_train = 2025
self.dynamic_features = [
"numero_casos", "casos_velocidade", "casos_aceleracao", "casos_mm_4_semanas",
"T2M", "T2M_MAX", "T2M_MIN", "PRECTOTCORR", "RH2M", "ALLSKY_SFC_SW_DWN",
"week_sin", "week_cos", "year_norm", "notificacao"
]
self.static_features = ["latitude", "longitude"]
self.feature_names_pt = {
"numero_casos": "Nº de Casos de Dengue",
"T2M": "Temperatura Média (°C)",
"PRECTOTCORR": "Precipitação (mm)"
}
self._loaded = False
self.load_assets()
def load_assets(self):
models_dir = self.project_root / "models"
scalers_dir = models_dir / "scalers"
model_path = models_dir / "model.keras"
city_map_path = models_dir / "city_to_idx.json"
if not scalers_dir.exists():
raise FileNotFoundError(str(scalers_dir) + " not found")
self.scaler_dyn = joblib.load(scalers_dir / "scaler_dyn_global.pkl")
self.scaler_static = joblib.load(scalers_dir / "scaler_static_global.pkl")
self.scaler_target = joblib.load(scalers_dir / "scaler_target_global.pkl")
if city_map_path.exists():
with open(city_map_path, "r", encoding="utf-8") as fh:
self.city_to_idx = {int(k): int(v) for k, v in json.load(fh).items()}
else:
self.city_to_idx = {}
# Load inference dataset (HF online or local offline)
df = None
if self.offline:
# Somente .parquet é aceito no modo offline
candidate_paths = []
if self.local_inference_path:
candidate_paths.append(self.local_inference_path)
candidate_paths.append(models_dir / "inference_data.parquet")
found = None
for p in candidate_paths:
try:
if p and Path(p).exists() and str(p).lower().endswith(".parquet"):
found = Path(p)
break
except Exception:
continue
if not found:
raise FileNotFoundError(
"Offline mode enabled but no local Parquet dataset found. "
"Place 'inference_data.parquet' under models/ or pass a valid 'local_inference_path' (.parquet)."
)
df = pd.read_parquet(found)
else:
inference_path = hf_hub_download(
repo_id="previdengue/predict_inference_data",
filename="inference_data.parquet",
repo_type="dataset"
)
df = pd.read_parquet(inference_path)
df["codigo_ibge"] = df["codigo_ibge"].astype(int)
df["ano"] = df["ano"].astype(int)
df["semana"] = df["semana"].astype(int)
try:
df["date"] = pd.to_datetime(df["ano"].astype(str) + df["semana"].astype(str) + "0", format="%Y%W%w", errors="coerce")
except Exception:
df["date"] = pd.NaT
df = df.sort_values(by=["codigo_ibge", "date"]).reset_index(drop=True)
df["week_sin"] = np.sin(2 * np.pi * df["semana"] / 52)
df["week_cos"] = np.cos(2 * np.pi * df["semana"] / 52)
df["year_norm"] = (df["ano"] - self.year_min_train) / (self.year_max_train - self.year_min_train)
df["notificacao"] = df["ano"].isin([2021, 2022]).astype(float)
self.df_master = df
self.municipios = df[["codigo_ibge", "municipio"]].drop_duplicates().sort_values("codigo_ibge")
if not model_path.exists():
raise FileNotFoundError(str(model_path) + " not found")
self.model = tf.keras.models.load_model(model_path, custom_objects={"asymmetric_mse": asymmetric_mse}, compile=False)
self._loaded = True
def plot_to_base64(self, fig):
buf = BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight", facecolor=fig.get_facecolor())
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode("utf-8")
plt.close(fig)
return img_str
def _prepare_sequence(self, df_mun):
df_seq = df_mun.tail(self.sequence_length).copy()
df_seq["casos_velocidade"] = df_seq["numero_casos"].diff().fillna(0)
df_seq["casos_aceleracao"] = df_seq["casos_velocidade"].diff().fillna(0)
df_seq["casos_mm_4_semanas"] = df_seq["numero_casos"].rolling(4, min_periods=1).mean()
df_seq["week_sin"] = np.sin(2 * np.pi * df_seq["semana"] / 52)
df_seq["week_cos"] = np.cos(2 * np.pi * df_seq["semana"] / 52)
df_seq["year_norm"] = (df_seq["ano"] - self.year_min_train) / (self.year_max_train - self.year_min_train)
if "notificacao" not in df_seq.columns:
df_seq["notificacao"] = df_seq["ano"].isin([2021, 2022]).astype(float)
else:
df_seq["notificacao"] = df_seq["notificacao"].astype(float)
return df_seq
def predict(self, ibge_code: int, show_plot=False, display_history_weeks=None):
if not self._loaded:
raise RuntimeError("assets not loaded")
df_mun = self.df_master[self.df_master["codigo_ibge"] == int(ibge_code)].copy().reset_index(drop=True)
if df_mun.empty or len(df_mun) < self.sequence_length:
raise ValueError(f"No data or insufficient history for ibge {ibge_code}")
municipio_row = self.municipios[self.municipios["codigo_ibge"] == int(ibge_code)]
municipality_name = municipio_row.iloc[0]["municipio"] if not municipio_row.empty else str(ibge_code)
df_mun_clean = df_mun.dropna(subset=["numero_casos"]).reset_index(drop=True)
if len(df_mun_clean) < self.sequence_length:
raise ValueError(f"Insufficient known-case history for {ibge_code}")
seq_df = self._prepare_sequence(df_mun_clean)
if len(seq_df) < self.sequence_length:
raise ValueError(f"Insufficient sequence length for {ibge_code}")
dynamic_raw = seq_df[self.dynamic_features].values
static_raw = seq_df[self.static_features].iloc[-1].values.reshape(1, -1)
missing_feats = [c for c in self.dynamic_features if c not in seq_df.columns]
if missing_feats:
raise ValueError(f"Missing dynamic features in dataframe: {missing_feats}")
if hasattr(self.scaler_dyn, "n_features_in_") and self.scaler_dyn.n_features_in_ != len(self.dynamic_features):
raise ValueError(
f"Dynamic scaler expects {getattr(self.scaler_dyn, 'n_features_in_', 'unknown')} features, "
f"but predictor assembled {len(self.dynamic_features)}. Ensure training and inference feature sets match."
)
dynamic_scaled = self.scaler_dyn.transform(dynamic_raw).reshape(1, self.sequence_length, -1)
static_scaled = self.scaler_static.transform(static_raw)
city_idx = int(self.city_to_idx.get(int(ibge_code), 0))
city_input = np.array([[city_idx]], dtype=np.int32)
y_pred = self.model.predict([dynamic_scaled, static_scaled, city_input], verbose=0)
y_pred_reg = y_pred[0] if isinstance(y_pred, (list, tuple)) else y_pred
y_pred_flat = y_pred_reg.reshape(-1, 1)
y_pred_inv_flat = self.scaler_target.inverse_transform(y_pred_flat)
y_pred_inv = y_pred_inv_flat.reshape(y_pred_reg.shape)
pred_values = np.maximum(y_pred_inv.flatten(), 0.0)
last_known_case = seq_df["numero_casos"].iloc[-1]
connected_prediction = np.insert(pred_values, 0, last_known_case)
last_real_date = seq_df["date"].iloc[-1] if "date" in seq_df.columns else None
predicted_data = []
for i, val in enumerate(connected_prediction[1:]):
pred_date = (last_real_date + timedelta(weeks=i + 1)).strftime("%Y-%m-%d") if pd.notna(last_real_date) else None
predicted_data.append({"date": pred_date, "predicted_cases": int(round(float(val)))})
# Histórico: por padrão retorna tudo; se display_history_weeks > 0, limita a janela
if display_history_weeks is None or (isinstance(display_history_weeks, (int, float)) and display_history_weeks <= 0):
hist_tail = df_mun.copy()
else:
hist_tail = df_mun.tail(min(len(df_mun), int(display_history_weeks))).copy()
historic_data = []
for _, row in hist_tail.iterrows():
historic_data.append({
"date": row["date"].strftime("%Y-%m-%d") if pd.notna(row.get("date")) else None,
"cases": int(row["numero_casos"]) if pd.notna(row.get("numero_casos")) else None
})
# Insights: lag correlation analysis and strategic summary
lag_plot_b64, strategic_summary, tipping_points = self.generate_lag_insights(df_mun)
insights = {
"lag_analysis_plot_base64": lag_plot_b64,
"strategic_summary": strategic_summary,
"tipping_points": tipping_points
}
return {
"municipality_name": municipality_name,
"ibge": int(ibge_code),
"last_known_index": int(df_mun.index[-1]),
"historic_data": historic_data,
"predicted_data": predicted_data,
"insights": insights,
}
def generate_lag_insights(self, df_mun: pd.DataFrame):
# Prepare analysis columns
df_analysis = df_mun.rename(columns={
"T2M": "Temperature_C",
"PRECTOTCORR": "Precipitation_mm"
})
max_lag = 12
cases_col = "numero_casos"
lag_features = ["Temperature_C", "Precipitation_mm"]
lag_correlations = {}
for col in lag_features:
if col in df_analysis.columns:
corrs = []
for lag in range(1, max_lag + 1):
try:
corr = df_analysis[cases_col].corr(df_analysis[col].shift(lag))
except Exception:
corr = np.nan
corrs.append(corr)
lag_correlations[col] = corrs
else:
lag_correlations[col] = [np.nan] * max_lag
# Plot
fig, ax = plt.subplots(figsize=(10, 6), facecolor="#18181b")
ax.set_facecolor("#18181b")
for feature_name, corrs in lag_correlations.items():
ax.plot(range(1, max_lag + 1), corrs, marker="o", linestyle="-", label=feature_name)
ax.set_title("Lag Analysis", color="white")
ax.set_xlabel("Lag (weeks)", color="white")
ax.set_ylabel("Correlation with cases", color="white")
ax.tick_params(colors="white")
ax.legend(facecolor="#27272a", edgecolor="gray", labelcolor="white")
ax.grid(True, which="both", linestyle="--", linewidth=0.5, color="#444")
lag_plot_b64 = self.plot_to_base64(fig)
# Summaries
lag_peaks = {}
for feature, corrs in lag_correlations.items():
if corrs and not all(pd.isna(corrs)):
peak = int(np.nanargmax(np.abs(np.array(corrs))) + 1)
else:
peak = "N/A"
lag_peaks[feature] = peak
temp_lag = lag_peaks.get("Temperature_C", "N/A")
rain_lag = lag_peaks.get("Precipitation_mm", "N/A")
summary = (
f"O modelo identifica Temperatura e Precipitação como fatores climáticos chave. "
f"Temperatura mostra impacto máximo após {temp_lag} semanas e precipitação após {rain_lag} semanas. "
"Ações preventivas devem ser intensificadas nessas janelas após eventos climáticos extremos."
)
tipping_points = [
{"factor": "Temperatura", "value": f"Maior impacto em {temp_lag} semanas"},
{"factor": "Precipitação", "value": f"Maior impacto em {rain_lag} semanas"},
{"factor": "Umidade", "value": "Aumenta a sobrevivência de mosquitos adultos"}
]
return lag_plot_b64, summary, tipping_points