File size: 13,933 Bytes
03932b3
 
647e0d3
 
03932b3
647e0d3
 
8852109
647e0d3
 
03932b3
 
 
 
647e0d3
03932b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647e0d3
03932b3
cd499b2
 
 
 
03932b3
 
647e0d3
 
03932b3
 
 
 
 
 
647e0d3
03932b3
 
 
 
 
 
 
 
 
 
647e0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8852109
647e0d3
 
 
8852109
647e0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e704cdd
647e0d3
 
e704cdd
647e0d3
 
 
 
 
 
 
8852109
647e0d3
 
8852109
 
647e0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8852109
647e0d3
8852109
647e0d3
 
 
e704cdd
647e0d3
03932b3
 
 
e704cdd
647e0d3
03932b3
 
647e0d3
03932b3
 
 
 
647e0d3
 
 
 
 
 
 
03932b3
647e0d3
03932b3
647e0d3
 
03932b3
 
7424eda
03932b3
 
647e0d3
03932b3
 
647e0d3
 
03932b3
 
 
 
 
647e0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8852109
647e0d3
 
03932b3
647e0d3
03932b3
 
 
 
 
647e0d3
03932b3
 
 
 
 
647e0d3
03932b3
 
 
212463e
03932b3
 
 
647e0d3
03932b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74d543b
647e0d3
03932b3
 
 
 
647e0d3
03932b3
 
 
647e0d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
import sys
import io
import json
import requests
from typing import Iterable, List, Tuple, Dict, Any

from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import torch
from transformers import AutoProcessor, Florence2ForConditionalGeneration
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

# ---------- Theme (kept from your original) ----------
colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
    c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C",
    c800="#2E5378", c900="#264364", c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue,
            text_size=text_size, font=font, font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

steel_blue_theme = SteelBlueTheme()

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
"""

# ---------- Models ----------
MODEL_IDS = {
    "Florence-2-base": "florence-community/Florence-2-base",
    "Florence-2-base-ft": "florence-community/Florence-2-base-ft",
    "Florence-2-large": "florence-community/Florence-2-large",
    "Florence-2-large-ft": "florence-community/Florence-2-large-ft",
}

models: Dict[str, Florence2ForConditionalGeneration] = {}
processors: Dict[str, AutoProcessor] = {}

print("Loading Florence-2 models... This may take a while.")
for name, repo_id in MODEL_IDS.items():
    print(f"Loading {name}...")
    model = Florence2ForConditionalGeneration.from_pretrained(
        repo_id,
        dtype=torch.bfloat16,
        device_map="auto",
        trust_remote_code=True
    )
    processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
    models[name] = model
    processors[name] = processor
    print(f"✅ Finished loading {name}.")

print("\n🎉 All models loaded successfully!")

# ---------- Utilities ----------
def _safe_parse_json_like(text: Any) -> Any:
    """
    If text is a dict already, return it. If it's a JSON-like string, try to json.loads it.
    Otherwise return the original text.
    """
    if isinstance(text, dict):
        return text
    if isinstance(text, str):
        text_str = text.strip()
        # try to decode if it looks like JSON
        if (text_str.startswith("{") and text_str.endswith("}")) or (text_str.startswith("[") and text_str.endswith("]")):
            try:
                return json.loads(text_str)
            except Exception:
                # fallback to returning original string
                return text
    return text

def _find_bboxes_and_labels(obj: Any) -> List[Tuple[List[int], str]]:
    """
    Recursively search `obj` (dict/list) for pairs of 'bboxes' and 'labels' (or region entries).
    Returns list of tuples: (bbox, label)
    bbox assumed as [x1,y1,x2,y2] (integers/floats)
    """
    found: List[Tuple[List[int], str]] = []

    def recurse(o: Any):
        if isinstance(o, dict):
            # direct pair case
            if "bboxes" in o:
                bboxes = o.get("bboxes", [])
                labels = o.get("labels", [])
                # if labels length mismatch, fill with empty strings
                for i, bx in enumerate(bboxes):
                    lbl = labels[i] if i < len(labels) else ""
                    # sometimes bboxes come as dicts with keys or lists
                    if isinstance(bx, dict) and {"x","y","w","h"}.issubset(bx.keys()):
                        # convert xywh to x1,y1,x2,y2
                        x = bx["x"]; y = bx["y"]; w = bx["w"]; h = bx["h"]
                        found.append(([int(x), int(y), int(x + w), int(y + h)], lbl))
                    else:
                        # assume list-like [x1,y1,x2,y2] or [x,y,w,h]
                        try:
                            bx_list = list(map(int, bx))
                            if len(bx_list) == 4:
                                x1, y1, x2, y2 = bx_list
                                # Heuristic: if x2>x1 and y2>y1 assume x1,y1,x2,y2 otherwise maybe xywh
                                if x2 > x1 and y2 > y1:
                                    found.append(([x1, y1, x2, y2], lbl))
                                else:
                                    # try treat as xywh
                                    found.append(([x1, y1, x1 + x2, y1 + y2], lbl))
                            else:
                                # skip unexpected format
                                pass
                        except Exception:
                            pass
            # also check for region entries like {'bbox': ..., 'text': ...} or list of regions
            if "regions" in o and isinstance(o["regions"], list):
                for reg in o["regions"]:
                    if isinstance(reg, dict) and "bbox" in reg:
                        bx = reg["bbox"]
                        lbl = reg.get("label", reg.get("text", ""))
                        try:
                            bx_list = list(map(int, bx))
                            if len(bx_list) == 4:
                                found.append(([bx_list[0], bx_list[1], bx_list[2], bx_list[3]], lbl))
                        except Exception:
                            pass
            # recurse deeper
            for v in o.values():
                recurse(v)
        elif isinstance(o, list):
            for item in o:
                recurse(item)
        # else ignore primitives

    recurse(obj)
    return found

def _draw_bboxes_on_image(img: Image.Image, boxes_and_labels: List[Tuple[List[int], str]]) -> Image.Image:
    """
    Draw bounding boxes and labels on a copy of `img`.
    """
    annotated = img.convert("RGB").copy()
    draw = ImageDraw.Draw(annotated)
    # try to get a default font (PIL may not have a TTF available)
    try:
        font = ImageFont.truetype("DejaVuSans.ttf", size=14)
    except Exception:
        font = ImageFont.load_default()

    for bbox, label in boxes_and_labels:
        # bbox should be [x1,y1,x2,y2]
        x1, y1, x2, y2 = bbox
        # keep coordinates within image bounds
        x1 = max(0, int(x1)); y1 = max(0, int(y1))
        x2 = min(annotated.width - 1, int(x2)); y2 = min(annotated.height - 1, int(y2))
        # draw rectangle (thicker by drawing several offsets)
        thickness = max(2, int(round(min(annotated.width, annotated.height) / 200)))
        for t in range(thickness):
            draw.rectangle([x1 - t, y1 - t, x2 + t, y2 + t], outline="red")
        # draw label background
        if label is None:
            label = ""
        label_text = str(label)
        text_w, text_h = draw.textsize(label_text, font=font)
        # background rectangle for label (semi-opaque)
        label_bg = [x1, max(0, y1 - text_h - 4), x1 + text_w + 6, y1]
        draw.rectangle(label_bg, fill="red")
        # text
        draw.text((x1 + 3, max(0, y1 - text_h - 2)), label_text, fill="white", font=font)

    return annotated

# ---------- Inference function ----------
# tasks for which we attempt to extract/display bboxes
VISUAL_REGION_TASKS = {"<OD>", "<DENSE_REGION_CAPTION>", "<OCR_WITH_REGION>", "<REGION_PROPOSAL>"}

# If you are using Spaces with GPU decorator; keep it as-is in your environment
def run_florence2_inference(model_name: str, image: Image.Image, task_prompt: str,
                            max_new_tokens: int = 1024, num_beams: int = 3):
    """
    Runs inference using the selected Florence-2 model.
    Returns a tuple: (parsed_answer, annotated_image_or_none)
    """
    if image is None:
        return {"error": "Please upload an image to get started."}, None

    model = models[model_name]
    processor = processors[model_name]

    # Prepare inputs (move to model device)
    inputs = processor(text=task_prompt, images=image, return_tensors="pt")
    # send tensors to model device and set dtype
    device = model.device
    for k, v in inputs.items():
        if isinstance(v, torch.Tensor):
            inputs[k] = v.to(device, dtype=torch.bfloat16)

    # Generate
    generated_ids = model.generate(
        input_ids=inputs.get("input_ids"),
        pixel_values=inputs.get("pixel_values"),
        max_new_tokens=max_new_tokens,
        num_beams=num_beams,
        do_sample=False
    )

    # Decode
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

    # Post-process (the processor provided by Florence models sometimes provides
    # a structured output such as dict with 'bboxes' etc.)
    image_size = image.size
    parsed_answer = processor.post_process_generation(
        generated_text, task=task_prompt, image_size=image_size
    )

    # Try to make parsed_answer JSON-serializable and easily inspectable
    parsed_serializable = parsed_answer
    # If it's a string that contains JSON, attempt to parse
    if isinstance(parsed_answer, str):
        parsed_serializable = _safe_parse_json_like(parsed_answer)

    annotated_image = None
    # If the task is in our visual region tasks, try to find bboxes and labels
    if task_prompt in VISUAL_REGION_TASKS:
        # parsed_serializable may be dict/list or string; try to find bboxes
        boxes_and_labels = _find_bboxes_and_labels(parsed_serializable)
        if boxes_and_labels:
            try:
                annotated_image = _draw_bboxes_on_image(image, boxes_and_labels)
            except Exception as e:
                # if drawing fails, set annotated_image to None but keep parsed answer
                print("Failed to draw boxes:", e)
                annotated_image = None

    # Return parsed answer (prefer a dict or serializable structure) and annotated image (PIL) or None
    return parsed_serializable, annotated_image

# ---------- UI ----------
florence_tasks = [
    "<OD>", "<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>",
    "<DENSE_REGION_CAPTION>", "<REGION_PROPOSAL>", "<OCR>", "<OCR_WITH_REGION>"
]

# Example image (keeps your example)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
    gr.Markdown("# **Florence-2 Vision Models**", elem_id="main-title")
    gr.Markdown("Select a model, upload an image, choose a task, and click Submit to see the parsed output and an annotated image (when bounding boxes are present).")

    with gr.Row():
        with gr.Column(scale=2):
            image_upload = gr.Image(type="pil", label="Upload Image", value=example_image, height=290)
            task_prompt = gr.Dropdown(
                label="Select Task",
                choices=florence_tasks,
                value="<MORE_DETAILED_CAPTION>"
            )
            model_choice = gr.Radio(
                choices=list(MODEL_IDS.keys()),
                label="Select Model",
                value="Florence-2-large-ft"
            )
            image_submit = gr.Button("Submit", variant="primary")

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(
                    label="Max New Tokens", minimum=128, maximum=2048, step=128, value=1024
                )
                num_beams = gr.Slider(
                    label="Number of Beams", minimum=1, maximum=10, step=1, value=3
                )

        with gr.Column(scale=3):
            gr.Markdown("## Output", elem_id="output-title")
            parsed_output = gr.JSON(label="Parsed Answer")
            annotated_output = gr.Image(label="Annotated Image (if available)", type="pil")

    image_submit.click(
        fn=run_florence2_inference,
        inputs=[model_choice, image_upload, task_prompt, max_new_tokens, num_beams],
        outputs=[parsed_output, annotated_output]
    )

if __name__ == "__main__":
    demo.queue().launch(debug=True, mcp_server=True, ssr_mode=False, show_error=True)