Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # -------------------------------------------------------------------------- | |
| # If you find this code useful, we kindly ask you to cite our paper in your work. | |
| # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation | |
| # More information about the method can be found at https://marigoldmonodepth.github.io | |
| # -------------------------------------------------------------------------- | |
| import functools | |
| import os | |
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import plotly.graph_objects as go | |
| import torch as torch | |
| from PIL import Image | |
| from scipy.ndimage import maximum_filter | |
| from marigold_dc import MarigoldDepthCompletionPipeline | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import login | |
| DRY_RUN = False | |
| def dilate_rgb_image(image, kernel_size): | |
| r_channel, g_channel, b_channel = image[..., 0], image[..., 1], image[..., 2] | |
| r_dilated = maximum_filter(r_channel, size=kernel_size) | |
| g_dilated = maximum_filter(g_channel, size=kernel_size) | |
| b_dilated = maximum_filter(b_channel, size=kernel_size) | |
| dilated_image = np.stack([r_dilated, g_dilated, b_dilated], axis=-1) | |
| return dilated_image | |
| def generate_rmse_plot(steps, metrics, denoise_steps): | |
| y_min = min(metrics) | |
| y_max = max(metrics) | |
| fig = go.Figure() | |
| fig.add_trace( | |
| go.Scatter( | |
| x=steps, | |
| y=metrics, | |
| mode="lines+markers", | |
| line=dict(color="#af2928"), | |
| name="RMSE", | |
| ) | |
| ) | |
| if denoise_steps < 20: | |
| x_dtick = 1 | |
| else: | |
| x_dtick = 5 | |
| fig.update_layout( | |
| autosize=False, | |
| height=300, | |
| xaxis_title="Steps", | |
| xaxis_range=[0, denoise_steps + 1], | |
| xaxis=dict( | |
| scaleanchor="y", | |
| scaleratio=1.5, | |
| dtick=x_dtick, | |
| ), | |
| yaxis_title="RMSE", | |
| yaxis_range=[np.log10(max(y_min - 0.1, 0.1)), np.log10(y_max + 1)], | |
| yaxis=dict( | |
| type="log", | |
| ), | |
| hovermode="x unified", | |
| template="plotly_white", | |
| ) | |
| return fig | |
| def process( | |
| pipe, | |
| path_image, | |
| path_sparse, | |
| denoise_steps, | |
| ): | |
| image = Image.open(path_image) | |
| sparse_depth = np.load(path_sparse) | |
| sparse_depth_valid = sparse_depth[sparse_depth > 0] | |
| sparse_depth_min = np.min(sparse_depth_valid) | |
| sparse_depth_max = np.max(sparse_depth_valid) | |
| width, height = image.size | |
| max_dim = max(width, height) | |
| processing_resolution = 0 | |
| if max_dim > 768: | |
| processing_resolution = 768 | |
| metrics = [] | |
| steps = [] | |
| for step, (pred, rmse) in enumerate( | |
| pipe( | |
| image=Image.open(path_image), | |
| sparse_depth=sparse_depth, | |
| num_inference_steps=denoise_steps + 1, | |
| processing_resolution=processing_resolution, | |
| dry_run=DRY_RUN, | |
| ) | |
| ): | |
| min_both = min(sparse_depth_min, pred.min().item()) | |
| max_both = min(sparse_depth_max, pred.max().item()) | |
| metrics.append(rmse) | |
| steps.append(step) | |
| vis_pred = pipe.image_processor.visualize_depth( | |
| pred, val_min=min_both, val_max=max_both | |
| )[0] | |
| vis_sparse = pipe.image_processor.visualize_depth( | |
| sparse_depth, val_min=min_both, val_max=max_both | |
| )[0] | |
| vis_sparse = np.array(vis_sparse) | |
| vis_sparse[sparse_depth <= 0] = (0, 0, 0) | |
| vis_sparse = dilate_rgb_image(vis_sparse, kernel_size=5) | |
| vis_sparse = Image.fromarray(vis_sparse) | |
| plot = generate_rmse_plot(steps, metrics, denoise_steps) | |
| yield ( | |
| [vis_sparse, vis_pred], | |
| plot, | |
| ) | |
| def run_demo_server(pipe): | |
| process_pipe = spaces.GPU(functools.partial(process, pipe)) | |
| os.environ["GRADIO_ALLOW_FLAGGING"] = "never" | |
| with gr.Blocks( | |
| analytics_enabled=False, | |
| title="Marigold Depth Completion", | |
| css=""" | |
| #short { | |
| height: 130px; | |
| } | |
| .slider .inner { | |
| width: 4px; | |
| background: #FFF; | |
| } | |
| .slider .icon-wrap svg { | |
| fill: #FFF; | |
| stroke: #FFF; | |
| stroke-width: 3px; | |
| } | |
| .viewport { | |
| aspect-ratio: 4/3; | |
| } | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| h2 { | |
| text-align: center; | |
| display: block; | |
| } | |
| h3 { | |
| text-align: center; | |
| display: block; | |
| } | |
| """, | |
| ) as demo: | |
| gr.HTML( | |
| """ | |
| <h1>⇆ Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion (ICCV 2025)</h1> | |
| <p align="center"> | |
| <a title="Website" href="https://MarigoldDepthCompletion.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://img.shields.io/badge/%F0%9F%A4%8D%20Project%20-Website-blue" alt="Website Badge"> | |
| </a> | |
| <a title="arXiv" href="https://arxiv.org/abs/2412.13389" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-af2928" alt="arXiv Badge"> | |
| </a> | |
| <a title="Github" href="https://github.com/prs-eth/marigold-dc" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://img.shields.io/github/stars/prs-eth/marigold-dc?label=GitHub&logo=github&color=C8C" alt="badge-github-stars"> | |
| </a> | |
| <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social"> | |
| </a><br> | |
| Start exploring the interactive examples at the bottom of the page! | |
| </p> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="filepath", | |
| ) | |
| input_sparse = gr.File( | |
| label="Input sparse depth (numpy file)", | |
| elem_id="short", | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| denoise_steps = gr.Slider( | |
| label="Number of denoising steps", | |
| minimum=10, | |
| maximum=50, | |
| step=1, | |
| value=50, | |
| ) | |
| with gr.Row(): | |
| submit_btn = gr.Button(value="Compute Depth", variant="primary") | |
| clear_btn = gr.Button(value="Clear") | |
| with gr.Column(): | |
| output_slider = ImageSlider( | |
| label="Completed depth (red-near, blue-far)", | |
| type="filepath", | |
| show_download_button=True, | |
| show_share_button=True, | |
| interactive=False, | |
| elem_classes="slider", | |
| position=0.25, | |
| ) | |
| plot = gr.Plot( | |
| label="RMSE between input and result", | |
| elem_id="viewport", | |
| ) | |
| inputs = [ | |
| input_image, | |
| input_sparse, | |
| denoise_steps, | |
| ] | |
| outputs = [ | |
| output_slider, | |
| plot, | |
| ] | |
| def submit_depth_fn(path_image, path_sparse, denoise_steps): | |
| for outputs in process_pipe(path_image, path_sparse, denoise_steps): | |
| yield outputs | |
| submit_btn.click( | |
| fn=submit_depth_fn, | |
| inputs=inputs, | |
| outputs=outputs, | |
| ) | |
| gr.Examples( | |
| fn=submit_depth_fn, | |
| examples=[ | |
| [ | |
| "files/kitti_1.png", | |
| "files/kitti_1.npy", | |
| 10, # denoise_steps | |
| ], | |
| [ | |
| "files/kitti_2.png", | |
| "files/kitti_2.npy", | |
| 10, # denoise_steps | |
| ], | |
| [ | |
| "files/teaser.png", | |
| "files/teaser_1000.npy", | |
| 10, # denoise_steps | |
| ], | |
| [ | |
| "files/teaser.png", | |
| "files/teaser_100.npy", | |
| 10, # denoise_steps | |
| ], | |
| [ | |
| "files/teaser.png", | |
| "files/teaser_10.npy", | |
| 10, # denoise_steps | |
| ], | |
| ], | |
| inputs=inputs, | |
| outputs=outputs, | |
| cache_examples="lazy", | |
| ) | |
| def clear_fn(): | |
| return [ | |
| gr.Image(value=None, interactive=True), | |
| gr.File(None, interactive=True), | |
| None, | |
| ] | |
| clear_btn.click( | |
| fn=clear_fn, | |
| inputs=[], | |
| outputs=[ | |
| input_image, | |
| input_sparse, | |
| output_slider, | |
| ], | |
| ) | |
| demo.queue( | |
| api_open=False, | |
| ).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| ) | |
| def main(): | |
| CHECKPOINT = "prs-eth/marigold-depth-v1-0" | |
| os.system("pip freeze") | |
| if "HF_TOKEN_LOGIN" in os.environ: | |
| login(token=os.environ["HF_TOKEN_LOGIN"]) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| pipe = MarigoldDepthCompletionPipeline.from_pretrained(CHECKPOINT) | |
| try: | |
| import xformers | |
| pipe.enable_xformers_memory_efficient_attention() | |
| except: | |
| pass # run without xformers | |
| pipe = pipe.to(device) | |
| run_demo_server(pipe) | |
| if __name__ == "__main__": | |
| main() | |