Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Commit 
							
							·
						
						1619d3a
	
0
								Parent(s):
							
							
Initial commit
Browse files- .gitattributes +38 -0
 - .gitignore +3 -0
 - LICENSE.txt +177 -0
 - README.md +24 -0
 - app.py +340 -0
 - files/kitti_1.npy +3 -0
 - files/kitti_1.png +3 -0
 - files/kitti_2.npy +3 -0
 - files/kitti_2.png +3 -0
 - files/teaser.png +3 -0
 - files/teaser_10.npy +3 -0
 - files/teaser_100.npy +3 -0
 - files/teaser_1000.npy +3 -0
 - marigold_dc.py +186 -0
 - requirements.txt +14 -0
 
    	
        .gitattributes
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         
     | 
| 2 | 
         
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         
     | 
| 3 | 
         
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         
     | 
| 4 | 
         
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 5 | 
         
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 6 | 
         
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 7 | 
         
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 8 | 
         
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 9 | 
         
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         
     | 
| 10 | 
         
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 11 | 
         
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         
     | 
| 12 | 
         
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         
     | 
| 13 | 
         
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         
     | 
| 14 | 
         
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         
     | 
| 15 | 
         
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 16 | 
         
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         
     | 
| 17 | 
         
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         
     | 
| 18 | 
         
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         
     | 
| 19 | 
         
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         
     | 
| 20 | 
         
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         
     | 
| 21 | 
         
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         
     | 
| 22 | 
         
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 23 | 
         
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         
     | 
| 24 | 
         
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         
     | 
| 25 | 
         
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         
     | 
| 26 | 
         
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 27 | 
         
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 28 | 
         
            +
            *.tar filter=lfs diff=lfs merge=lfs -text
         
     | 
| 29 | 
         
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         
     | 
| 30 | 
         
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 31 | 
         
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         
     | 
| 32 | 
         
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 33 | 
         
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         
     | 
| 34 | 
         
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         
     | 
| 35 | 
         
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 36 | 
         
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         
     | 
| 37 | 
         
            +
            *.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 38 | 
         
            +
            *.png filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        .gitignore
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            .idea
         
     | 
| 2 | 
         
            +
            .DS_Store
         
     | 
| 3 | 
         
            +
            __pycache__
         
     | 
    	
        LICENSE.txt
    ADDED
    
    | 
         @@ -0,0 +1,177 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
                                             Apache License
         
     | 
| 3 | 
         
            +
                                       Version 2.0, January 2004
         
     | 
| 4 | 
         
            +
                                    http://www.apache.org/licenses/
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
               TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
               1. Definitions.
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                  "License" shall mean the terms and conditions for use, reproduction,
         
     | 
| 11 | 
         
            +
                  and distribution as defined by Sections 1 through 9 of this document.
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                  "Licensor" shall mean the copyright owner or entity authorized by
         
     | 
| 14 | 
         
            +
                  the copyright owner that is granting the License.
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                  "Legal Entity" shall mean the union of the acting entity and all
         
     | 
| 17 | 
         
            +
                  other entities that control, are controlled by, or are under common
         
     | 
| 18 | 
         
            +
                  control with that entity. For the purposes of this definition,
         
     | 
| 19 | 
         
            +
                  "control" means (i) the power, direct or indirect, to cause the
         
     | 
| 20 | 
         
            +
                  direction or management of such entity, whether by contract or
         
     | 
| 21 | 
         
            +
                  otherwise, or (ii) ownership of fifty percent (50%) or more of the
         
     | 
| 22 | 
         
            +
                  outstanding shares, or (iii) beneficial ownership of such entity.
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                  "You" (or "Your") shall mean an individual or Legal Entity
         
     | 
| 25 | 
         
            +
                  exercising permissions granted by this License.
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                  "Source" form shall mean the preferred form for making modifications,
         
     | 
| 28 | 
         
            +
                  including but not limited to software source code, documentation
         
     | 
| 29 | 
         
            +
                  source, and configuration files.
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                  "Object" form shall mean any form resulting from mechanical
         
     | 
| 32 | 
         
            +
                  transformation or translation of a Source form, including but
         
     | 
| 33 | 
         
            +
                  not limited to compiled object code, generated documentation,
         
     | 
| 34 | 
         
            +
                  and conversions to other media types.
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                  "Work" shall mean the work of authorship, whether in Source or
         
     | 
| 37 | 
         
            +
                  Object form, made available under the License, as indicated by a
         
     | 
| 38 | 
         
            +
                  copyright notice that is included in or attached to the work
         
     | 
| 39 | 
         
            +
                  (an example is provided in the Appendix below).
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                  "Derivative Works" shall mean any work, whether in Source or Object
         
     | 
| 42 | 
         
            +
                  form, that is based on (or derived from) the Work and for which the
         
     | 
| 43 | 
         
            +
                  editorial revisions, annotations, elaborations, or other modifications
         
     | 
| 44 | 
         
            +
                  represent, as a whole, an original work of authorship. For the purposes
         
     | 
| 45 | 
         
            +
                  of this License, Derivative Works shall not include works that remain
         
     | 
| 46 | 
         
            +
                  separable from, or merely link (or bind by name) to the interfaces of,
         
     | 
| 47 | 
         
            +
                  the Work and Derivative Works thereof.
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                  "Contribution" shall mean any work of authorship, including
         
     | 
| 50 | 
         
            +
                  the original version of the Work and any modifications or additions
         
     | 
| 51 | 
         
            +
                  to that Work or Derivative Works thereof, that is intentionally
         
     | 
| 52 | 
         
            +
                  submitted to Licensor for inclusion in the Work by the copyright owner
         
     | 
| 53 | 
         
            +
                  or by an individual or Legal Entity authorized to submit on behalf of
         
     | 
| 54 | 
         
            +
                  the copyright owner. For the purposes of this definition, "submitted"
         
     | 
| 55 | 
         
            +
                  means any form of electronic, verbal, or written communication sent
         
     | 
| 56 | 
         
            +
                  to the Licensor or its representatives, including but not limited to
         
     | 
| 57 | 
         
            +
                  communication on electronic mailing lists, source code control systems,
         
     | 
| 58 | 
         
            +
                  and issue tracking systems that are managed by, or on behalf of, the
         
     | 
| 59 | 
         
            +
                  Licensor for the purpose of discussing and improving the Work, but
         
     | 
| 60 | 
         
            +
                  excluding communication that is conspicuously marked or otherwise
         
     | 
| 61 | 
         
            +
                  designated in writing by the copyright owner as "Not a Contribution."
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                  "Contributor" shall mean Licensor and any individual or Legal Entity
         
     | 
| 64 | 
         
            +
                  on behalf of whom a Contribution has been received by Licensor and
         
     | 
| 65 | 
         
            +
                  subsequently incorporated within the Work.
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
               2. Grant of Copyright License. Subject to the terms and conditions of
         
     | 
| 68 | 
         
            +
                  this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 69 | 
         
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 70 | 
         
            +
                  copyright license to reproduce, prepare Derivative Works of,
         
     | 
| 71 | 
         
            +
                  publicly display, publicly perform, sublicense, and distribute the
         
     | 
| 72 | 
         
            +
                  Work and such Derivative Works in Source or Object form.
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
               3. Grant of Patent License. Subject to the terms and conditions of
         
     | 
| 75 | 
         
            +
                  this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 76 | 
         
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 77 | 
         
            +
                  (except as stated in this section) patent license to make, have made,
         
     | 
| 78 | 
         
            +
                  use, offer to sell, sell, import, and otherwise transfer the Work,
         
     | 
| 79 | 
         
            +
                  where such license applies only to those patent claims licensable
         
     | 
| 80 | 
         
            +
                  by such Contributor that are necessarily infringed by their
         
     | 
| 81 | 
         
            +
                  Contribution(s) alone or by combination of their Contribution(s)
         
     | 
| 82 | 
         
            +
                  with the Work to which such Contribution(s) was submitted. If You
         
     | 
| 83 | 
         
            +
                  institute patent litigation against any entity (including a
         
     | 
| 84 | 
         
            +
                  cross-claim or counterclaim in a lawsuit) alleging that the Work
         
     | 
| 85 | 
         
            +
                  or a Contribution incorporated within the Work constitutes direct
         
     | 
| 86 | 
         
            +
                  or contributory patent infringement, then any patent licenses
         
     | 
| 87 | 
         
            +
                  granted to You under this License for that Work shall terminate
         
     | 
| 88 | 
         
            +
                  as of the date such litigation is filed.
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
               4. Redistribution. You may reproduce and distribute copies of the
         
     | 
| 91 | 
         
            +
                  Work or Derivative Works thereof in any medium, with or without
         
     | 
| 92 | 
         
            +
                  modifications, and in Source or Object form, provided that You
         
     | 
| 93 | 
         
            +
                  meet the following conditions:
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                  (a) You must give any other recipients of the Work or
         
     | 
| 96 | 
         
            +
                      Derivative Works a copy of this License; and
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                  (b) You must cause any modified files to carry prominent notices
         
     | 
| 99 | 
         
            +
                      stating that You changed the files; and
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                  (c) You must retain, in the Source form of any Derivative Works
         
     | 
| 102 | 
         
            +
                      that You distribute, all copyright, patent, trademark, and
         
     | 
| 103 | 
         
            +
                      attribution notices from the Source form of the Work,
         
     | 
| 104 | 
         
            +
                      excluding those notices that do not pertain to any part of
         
     | 
| 105 | 
         
            +
                      the Derivative Works; and
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                  (d) If the Work includes a "NOTICE" text file as part of its
         
     | 
| 108 | 
         
            +
                      distribution, then any Derivative Works that You distribute must
         
     | 
| 109 | 
         
            +
                      include a readable copy of the attribution notices contained
         
     | 
| 110 | 
         
            +
                      within such NOTICE file, excluding those notices that do not
         
     | 
| 111 | 
         
            +
                      pertain to any part of the Derivative Works, in at least one
         
     | 
| 112 | 
         
            +
                      of the following places: within a NOTICE text file distributed
         
     | 
| 113 | 
         
            +
                      as part of the Derivative Works; within the Source form or
         
     | 
| 114 | 
         
            +
                      documentation, if provided along with the Derivative Works; or,
         
     | 
| 115 | 
         
            +
                      within a display generated by the Derivative Works, if and
         
     | 
| 116 | 
         
            +
                      wherever such third-party notices normally appear. The contents
         
     | 
| 117 | 
         
            +
                      of the NOTICE file are for informational purposes only and
         
     | 
| 118 | 
         
            +
                      do not modify the License. You may add Your own attribution
         
     | 
| 119 | 
         
            +
                      notices within Derivative Works that You distribute, alongside
         
     | 
| 120 | 
         
            +
                      or as an addendum to the NOTICE text from the Work, provided
         
     | 
| 121 | 
         
            +
                      that such additional attribution notices cannot be construed
         
     | 
| 122 | 
         
            +
                      as modifying the License.
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                  You may add Your own copyright statement to Your modifications and
         
     | 
| 125 | 
         
            +
                  may provide additional or different license terms and conditions
         
     | 
| 126 | 
         
            +
                  for use, reproduction, or distribution of Your modifications, or
         
     | 
| 127 | 
         
            +
                  for any such Derivative Works as a whole, provided Your use,
         
     | 
| 128 | 
         
            +
                  reproduction, and distribution of the Work otherwise complies with
         
     | 
| 129 | 
         
            +
                  the conditions stated in this License.
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
               5. Submission of Contributions. Unless You explicitly state otherwise,
         
     | 
| 132 | 
         
            +
                  any Contribution intentionally submitted for inclusion in the Work
         
     | 
| 133 | 
         
            +
                  by You to the Licensor shall be under the terms and conditions of
         
     | 
| 134 | 
         
            +
                  this License, without any additional terms or conditions.
         
     | 
| 135 | 
         
            +
                  Notwithstanding the above, nothing herein shall supersede or modify
         
     | 
| 136 | 
         
            +
                  the terms of any separate license agreement you may have executed
         
     | 
| 137 | 
         
            +
                  with Licensor regarding such Contributions.
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
               6. Trademarks. This License does not grant permission to use the trade
         
     | 
| 140 | 
         
            +
                  names, trademarks, service marks, or product names of the Licensor,
         
     | 
| 141 | 
         
            +
                  except as required for reasonable and customary use in describing the
         
     | 
| 142 | 
         
            +
                  origin of the Work and reproducing the content of the NOTICE file.
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
               7. Disclaimer of Warranty. Unless required by applicable law or
         
     | 
| 145 | 
         
            +
                  agreed to in writing, Licensor provides the Work (and each
         
     | 
| 146 | 
         
            +
                  Contributor provides its Contributions) on an "AS IS" BASIS,
         
     | 
| 147 | 
         
            +
                  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
         
     | 
| 148 | 
         
            +
                  implied, including, without limitation, any warranties or conditions
         
     | 
| 149 | 
         
            +
                  of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
         
     | 
| 150 | 
         
            +
                  PARTICULAR PURPOSE. You are solely responsible for determining the
         
     | 
| 151 | 
         
            +
                  appropriateness of using or redistributing the Work and assume any
         
     | 
| 152 | 
         
            +
                  risks associated with Your exercise of permissions under this License.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
               8. Limitation of Liability. In no event and under no legal theory,
         
     | 
| 155 | 
         
            +
                  whether in tort (including negligence), contract, or otherwise,
         
     | 
| 156 | 
         
            +
                  unless required by applicable law (such as deliberate and grossly
         
     | 
| 157 | 
         
            +
                  negligent acts) or agreed to in writing, shall any Contributor be
         
     | 
| 158 | 
         
            +
                  liable to You for damages, including any direct, indirect, special,
         
     | 
| 159 | 
         
            +
                  incidental, or consequential damages of any character arising as a
         
     | 
| 160 | 
         
            +
                  result of this License or out of the use or inability to use the
         
     | 
| 161 | 
         
            +
                  Work (including but not limited to damages for loss of goodwill,
         
     | 
| 162 | 
         
            +
                  work stoppage, computer failure or malfunction, or any and all
         
     | 
| 163 | 
         
            +
                  other commercial damages or losses), even if such Contributor
         
     | 
| 164 | 
         
            +
                  has been advised of the possibility of such damages.
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
               9. Accepting Warranty or Additional Liability. While redistributing
         
     | 
| 167 | 
         
            +
                  the Work or Derivative Works thereof, You may choose to offer,
         
     | 
| 168 | 
         
            +
                  and charge a fee for, acceptance of support, warranty, indemnity,
         
     | 
| 169 | 
         
            +
                  or other liability obligations and/or rights consistent with this
         
     | 
| 170 | 
         
            +
                  License. However, in accepting such obligations, You may act only
         
     | 
| 171 | 
         
            +
                  on Your own behalf and on Your sole responsibility, not on behalf
         
     | 
| 172 | 
         
            +
                  of any other Contributor, and only if You agree to indemnify,
         
     | 
| 173 | 
         
            +
                  defend, and hold each Contributor harmless for any liability
         
     | 
| 174 | 
         
            +
                  incurred by, or claims asserted against, such Contributor by reason
         
     | 
| 175 | 
         
            +
                  of your accepting any such warranty or additional liability.
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
               END OF TERMS AND CONDITIONS
         
     | 
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,24 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            title: Marigold Depth Completion
         
     | 
| 3 | 
         
            +
            emoji: 🏵️
         
     | 
| 4 | 
         
            +
            colorFrom: blue
         
     | 
| 5 | 
         
            +
            colorTo: red
         
     | 
| 6 | 
         
            +
            sdk: gradio
         
     | 
| 7 | 
         
            +
            sdk_version: 4.44.1
         
     | 
| 8 | 
         
            +
            app_file: app.py
         
     | 
| 9 | 
         
            +
            pinned: true
         
     | 
| 10 | 
         
            +
            license: apache-2.0
         
     | 
| 11 | 
         
            +
            models:
         
     | 
| 12 | 
         
            +
            - prs-eth/marigold-v1-0
         
     | 
| 13 | 
         
            +
            ---
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            This is a demo of the monocular depth completion pipeline, based on the CVPR 2024 paper titled ["Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"](https://arxiv.org/abs/2312.02145)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            ```
         
     | 
| 18 | 
         
            +
            @InProceedings{ke2023repurposing,
         
     | 
| 19 | 
         
            +
              title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
         
     | 
| 20 | 
         
            +
              author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
         
     | 
| 21 | 
         
            +
              booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
         
     | 
| 22 | 
         
            +
              year={2024}
         
     | 
| 23 | 
         
            +
            }
         
     | 
| 24 | 
         
            +
            ```
         
     | 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,340 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
            # --------------------------------------------------------------------------
         
     | 
| 15 | 
         
            +
            # If you find this code useful, we kindly ask you to cite our paper in your work.
         
     | 
| 16 | 
         
            +
            # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
         
     | 
| 17 | 
         
            +
            # More information about the method can be found at https://marigoldmonodepth.github.io
         
     | 
| 18 | 
         
            +
            # --------------------------------------------------------------------------
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            import functools
         
     | 
| 21 | 
         
            +
            import os
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            import spaces
         
     | 
| 24 | 
         
            +
            import gradio as gr
         
     | 
| 25 | 
         
            +
            import numpy as np
         
     | 
| 26 | 
         
            +
            import plotly.graph_objects as go
         
     | 
| 27 | 
         
            +
            import torch as torch
         
     | 
| 28 | 
         
            +
            from PIL import Image
         
     | 
| 29 | 
         
            +
            from scipy.ndimage import maximum_filter
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            from marigold_dc import MarigoldDepthCompletionPipeline
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            from gradio_imageslider import ImageSlider
         
     | 
| 34 | 
         
            +
            from huggingface_hub import login
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            DRY_RUN = False
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            def dilate_rgb_image(image, kernel_size):
         
     | 
| 40 | 
         
            +
                r_channel, g_channel, b_channel = image[..., 0], image[..., 1], image[..., 2]
         
     | 
| 41 | 
         
            +
                r_dilated = maximum_filter(r_channel, size=kernel_size)
         
     | 
| 42 | 
         
            +
                g_dilated = maximum_filter(g_channel, size=kernel_size)
         
     | 
| 43 | 
         
            +
                b_dilated = maximum_filter(b_channel, size=kernel_size)
         
     | 
| 44 | 
         
            +
                dilated_image = np.stack([r_dilated, g_dilated, b_dilated], axis=-1)
         
     | 
| 45 | 
         
            +
                return dilated_image
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            def generate_rmse_plot(steps, metrics, denoise_steps):
         
     | 
| 49 | 
         
            +
                y_min = min(metrics)
         
     | 
| 50 | 
         
            +
                y_max = max(metrics)
         
     | 
| 51 | 
         
            +
                fig = go.Figure()
         
     | 
| 52 | 
         
            +
                fig.add_trace(
         
     | 
| 53 | 
         
            +
                    go.Scatter(
         
     | 
| 54 | 
         
            +
                        x=steps,
         
     | 
| 55 | 
         
            +
                        y=metrics,
         
     | 
| 56 | 
         
            +
                        mode="lines+markers",
         
     | 
| 57 | 
         
            +
                        line=dict(color="#af2928"),
         
     | 
| 58 | 
         
            +
                        name="RMSE",
         
     | 
| 59 | 
         
            +
                    )
         
     | 
| 60 | 
         
            +
                )
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                if denoise_steps < 20:
         
     | 
| 63 | 
         
            +
                    x_dtick = 1
         
     | 
| 64 | 
         
            +
                else:
         
     | 
| 65 | 
         
            +
                    x_dtick = 5
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                fig.update_layout(
         
     | 
| 68 | 
         
            +
                    autosize=False,
         
     | 
| 69 | 
         
            +
                    height=300,
         
     | 
| 70 | 
         
            +
                    xaxis_title="Steps",
         
     | 
| 71 | 
         
            +
                    xaxis_range=[0, denoise_steps + 1],
         
     | 
| 72 | 
         
            +
                    xaxis=dict(
         
     | 
| 73 | 
         
            +
                        scaleanchor="y",
         
     | 
| 74 | 
         
            +
                        scaleratio=1.5,
         
     | 
| 75 | 
         
            +
                        dtick=x_dtick,
         
     | 
| 76 | 
         
            +
                    ),
         
     | 
| 77 | 
         
            +
                    yaxis_title="RMSE",
         
     | 
| 78 | 
         
            +
                    yaxis_range=[np.log10(max(y_min - 0.1, 0.1)), np.log10(y_max + 1)],
         
     | 
| 79 | 
         
            +
                    yaxis=dict(
         
     | 
| 80 | 
         
            +
                        type="log",
         
     | 
| 81 | 
         
            +
                    ),
         
     | 
| 82 | 
         
            +
                    hovermode="x unified",
         
     | 
| 83 | 
         
            +
                    template="plotly_white",
         
     | 
| 84 | 
         
            +
                )
         
     | 
| 85 | 
         
            +
                return fig
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            def process(
         
     | 
| 89 | 
         
            +
                pipe,
         
     | 
| 90 | 
         
            +
                path_image,
         
     | 
| 91 | 
         
            +
                path_sparse,
         
     | 
| 92 | 
         
            +
                denoise_steps,
         
     | 
| 93 | 
         
            +
            ):
         
     | 
| 94 | 
         
            +
                image = Image.open(path_image)
         
     | 
| 95 | 
         
            +
                sparse_depth = np.load(path_sparse)
         
     | 
| 96 | 
         
            +
                sparse_depth_valid = sparse_depth[sparse_depth > 0]
         
     | 
| 97 | 
         
            +
                sparse_depth_min = np.min(sparse_depth_valid)
         
     | 
| 98 | 
         
            +
                sparse_depth_max = np.max(sparse_depth_valid)
         
     | 
| 99 | 
         
            +
                width, height = image.size
         
     | 
| 100 | 
         
            +
                max_dim = max(width, height)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                processing_resolution = 0
         
     | 
| 103 | 
         
            +
                if max_dim > 768:
         
     | 
| 104 | 
         
            +
                    processing_resolution = 768
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                metrics = []
         
     | 
| 107 | 
         
            +
                steps = []
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                for step, (pred, rmse) in enumerate(
         
     | 
| 110 | 
         
            +
                    pipe(
         
     | 
| 111 | 
         
            +
                        image=Image.open(path_image),
         
     | 
| 112 | 
         
            +
                        sparse_depth=sparse_depth,
         
     | 
| 113 | 
         
            +
                        num_inference_steps=denoise_steps + 1,
         
     | 
| 114 | 
         
            +
                        processing_resolution=processing_resolution,
         
     | 
| 115 | 
         
            +
                        dry_run=DRY_RUN,
         
     | 
| 116 | 
         
            +
                    )
         
     | 
| 117 | 
         
            +
                ):
         
     | 
| 118 | 
         
            +
                    min_both = min(sparse_depth_min, pred.min().item())
         
     | 
| 119 | 
         
            +
                    max_both = min(sparse_depth_max, pred.max().item())
         
     | 
| 120 | 
         
            +
                    metrics.append(rmse)
         
     | 
| 121 | 
         
            +
                    steps.append(step)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    vis_pred = pipe.image_processor.visualize_depth(
         
     | 
| 124 | 
         
            +
                        pred, val_min=min_both, val_max=max_both
         
     | 
| 125 | 
         
            +
                    )[0]
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                    vis_sparse = pipe.image_processor.visualize_depth(
         
     | 
| 128 | 
         
            +
                        sparse_depth, val_min=min_both, val_max=max_both
         
     | 
| 129 | 
         
            +
                    )[0]
         
     | 
| 130 | 
         
            +
                    vis_sparse = np.array(vis_sparse)
         
     | 
| 131 | 
         
            +
                    vis_sparse[sparse_depth <= 0] = (0, 0, 0)
         
     | 
| 132 | 
         
            +
                    vis_sparse = dilate_rgb_image(vis_sparse, kernel_size=5)
         
     | 
| 133 | 
         
            +
                    vis_sparse = Image.fromarray(vis_sparse)
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    plot = generate_rmse_plot(steps, metrics, denoise_steps)
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    yield (
         
     | 
| 138 | 
         
            +
                        [vis_sparse, vis_pred],
         
     | 
| 139 | 
         
            +
                        plot,
         
     | 
| 140 | 
         
            +
                    )
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
            def run_demo_server(pipe):
         
     | 
| 144 | 
         
            +
                process_pipe = spaces.GPU(functools.partial(process, pipe))
         
     | 
| 145 | 
         
            +
                os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                with gr.Blocks(
         
     | 
| 148 | 
         
            +
                    analytics_enabled=False,
         
     | 
| 149 | 
         
            +
                    title="Marigold Depth Completion",
         
     | 
| 150 | 
         
            +
                    css="""
         
     | 
| 151 | 
         
            +
                        #short {
         
     | 
| 152 | 
         
            +
                            height: 130px;
         
     | 
| 153 | 
         
            +
                        }
         
     | 
| 154 | 
         
            +
                        .slider .inner {
         
     | 
| 155 | 
         
            +
                            width: 4px;
         
     | 
| 156 | 
         
            +
                            background: #FFF;
         
     | 
| 157 | 
         
            +
                        }
         
     | 
| 158 | 
         
            +
                        .slider .icon-wrap svg {
         
     | 
| 159 | 
         
            +
                            fill: #FFF;
         
     | 
| 160 | 
         
            +
                            stroke: #FFF;
         
     | 
| 161 | 
         
            +
                            stroke-width: 3px;
         
     | 
| 162 | 
         
            +
                        }
         
     | 
| 163 | 
         
            +
                        .viewport {
         
     | 
| 164 | 
         
            +
                            aspect-ratio: 4/3;
         
     | 
| 165 | 
         
            +
                        }
         
     | 
| 166 | 
         
            +
                        h1 {
         
     | 
| 167 | 
         
            +
                            text-align: center;
         
     | 
| 168 | 
         
            +
                            display: block;
         
     | 
| 169 | 
         
            +
                        }
         
     | 
| 170 | 
         
            +
                        h2 {
         
     | 
| 171 | 
         
            +
                            text-align: center;
         
     | 
| 172 | 
         
            +
                            display: block;
         
     | 
| 173 | 
         
            +
                        }
         
     | 
| 174 | 
         
            +
                        h3 {
         
     | 
| 175 | 
         
            +
                            text-align: center;
         
     | 
| 176 | 
         
            +
                            display: block;
         
     | 
| 177 | 
         
            +
                        }
         
     | 
| 178 | 
         
            +
                    """,
         
     | 
| 179 | 
         
            +
                ) as demo:
         
     | 
| 180 | 
         
            +
                    gr.HTML(
         
     | 
| 181 | 
         
            +
                        """
         
     | 
| 182 | 
         
            +
                        <h1>⇆ Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion</h1>
         
     | 
| 183 | 
         
            +
                        <p align="center">
         
     | 
| 184 | 
         
            +
                        <a title="Website" href="https://MarigoldDepthCompletion.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
         
     | 
| 185 | 
         
            +
                            <img src="https://img.shields.io/badge/%F0%9F%A4%8D%20Project%20-Website-blue" alt="Website Badge">
         
     | 
| 186 | 
         
            +
                        </a>
         
     | 
| 187 | 
         
            +
                        <a title="arXiv" href="https://arxiv.org/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
         
     | 
| 188 | 
         
            +
                            <img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-af2928" alt="arXiv Badge">
         
     | 
| 189 | 
         
            +
                        </a>
         
     | 
| 190 | 
         
            +
                        <a title="Github" href="https://github.com/prs-eth/marigold-dc" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
         
     | 
| 191 | 
         
            +
                            <img src="https://img.shields.io/github/stars/prs-eth/marigold-dc?label=GitHub&logo=github&color=C8C" alt="badge-github-stars">
         
     | 
| 192 | 
         
            +
                        </a>
         
     | 
| 193 | 
         
            +
                        <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
         
     | 
| 194 | 
         
            +
                            <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
         
     | 
| 195 | 
         
            +
                        </a><br>
         
     | 
| 196 | 
         
            +
                        Start exploring the interactive examples at the bottom of the page!
         
     | 
| 197 | 
         
            +
                        </p>
         
     | 
| 198 | 
         
            +
                    """
         
     | 
| 199 | 
         
            +
                    )
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    with gr.Row():
         
     | 
| 202 | 
         
            +
                        with gr.Column():
         
     | 
| 203 | 
         
            +
                            input_image = gr.Image(
         
     | 
| 204 | 
         
            +
                                label="Input Image",
         
     | 
| 205 | 
         
            +
                                type="filepath",
         
     | 
| 206 | 
         
            +
                            )
         
     | 
| 207 | 
         
            +
                            input_sparse = gr.File(
         
     | 
| 208 | 
         
            +
                                label="Input sparse depth (numpy file)",
         
     | 
| 209 | 
         
            +
                                elem_id="short",
         
     | 
| 210 | 
         
            +
                            )
         
     | 
| 211 | 
         
            +
                            with gr.Accordion("Advanced options", open=False):
         
     | 
| 212 | 
         
            +
                                denoise_steps = gr.Slider(
         
     | 
| 213 | 
         
            +
                                    label="Number of denoising steps",
         
     | 
| 214 | 
         
            +
                                    minimum=10,
         
     | 
| 215 | 
         
            +
                                    maximum=50,
         
     | 
| 216 | 
         
            +
                                    step=1,
         
     | 
| 217 | 
         
            +
                                    value=10,
         
     | 
| 218 | 
         
            +
                                )
         
     | 
| 219 | 
         
            +
                            with gr.Row():
         
     | 
| 220 | 
         
            +
                                submit_btn = gr.Button(value="Compute Depth", variant="primary")
         
     | 
| 221 | 
         
            +
                                clear_btn = gr.Button(value="Clear")
         
     | 
| 222 | 
         
            +
                        with gr.Column():
         
     | 
| 223 | 
         
            +
                            output_slider = ImageSlider(
         
     | 
| 224 | 
         
            +
                                label="Completed depth (red-near, blue-far)",
         
     | 
| 225 | 
         
            +
                                type="filepath",
         
     | 
| 226 | 
         
            +
                                show_download_button=True,
         
     | 
| 227 | 
         
            +
                                show_share_button=True,
         
     | 
| 228 | 
         
            +
                                interactive=False,
         
     | 
| 229 | 
         
            +
                                elem_classes="slider",
         
     | 
| 230 | 
         
            +
                                position=0.25,
         
     | 
| 231 | 
         
            +
                            )
         
     | 
| 232 | 
         
            +
                            plot = gr.Plot(
         
     | 
| 233 | 
         
            +
                                label="RMSE between input and result",
         
     | 
| 234 | 
         
            +
                                elem_id="viewport",
         
     | 
| 235 | 
         
            +
                            )
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    inputs = [
         
     | 
| 238 | 
         
            +
                        input_image,
         
     | 
| 239 | 
         
            +
                        input_sparse,
         
     | 
| 240 | 
         
            +
                        denoise_steps,
         
     | 
| 241 | 
         
            +
                    ]
         
     | 
| 242 | 
         
            +
                    outputs = [
         
     | 
| 243 | 
         
            +
                        output_slider,
         
     | 
| 244 | 
         
            +
                        plot,
         
     | 
| 245 | 
         
            +
                    ]
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                    def submit_depth_fn(path_image, path_sparse, denoise_steps):
         
     | 
| 248 | 
         
            +
                        for outputs in process_pipe(path_image, path_sparse, denoise_steps):
         
     | 
| 249 | 
         
            +
                            yield outputs
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    submit_btn.click(
         
     | 
| 252 | 
         
            +
                        fn=submit_depth_fn,
         
     | 
| 253 | 
         
            +
                        inputs=inputs,
         
     | 
| 254 | 
         
            +
                        outputs=outputs,
         
     | 
| 255 | 
         
            +
                    )
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    gr.Examples(
         
     | 
| 258 | 
         
            +
                        fn=submit_depth_fn,
         
     | 
| 259 | 
         
            +
                        examples=[
         
     | 
| 260 | 
         
            +
                            [
         
     | 
| 261 | 
         
            +
                                "files/kitti_1.png",
         
     | 
| 262 | 
         
            +
                                "files/kitti_1.npy",
         
     | 
| 263 | 
         
            +
                                10,  # denoise_steps
         
     | 
| 264 | 
         
            +
                            ],
         
     | 
| 265 | 
         
            +
                            [
         
     | 
| 266 | 
         
            +
                                "files/kitti_2.png",
         
     | 
| 267 | 
         
            +
                                "files/kitti_2.npy",
         
     | 
| 268 | 
         
            +
                                10,  # denoise_steps
         
     | 
| 269 | 
         
            +
                            ],
         
     | 
| 270 | 
         
            +
                            [
         
     | 
| 271 | 
         
            +
                                "files/teaser.png",
         
     | 
| 272 | 
         
            +
                                "files/teaser_1000.npy",
         
     | 
| 273 | 
         
            +
                                10,  # denoise_steps
         
     | 
| 274 | 
         
            +
                            ],
         
     | 
| 275 | 
         
            +
                            [
         
     | 
| 276 | 
         
            +
                                "files/teaser.png",
         
     | 
| 277 | 
         
            +
                                "files/teaser_100.npy",
         
     | 
| 278 | 
         
            +
                                10,  # denoise_steps
         
     | 
| 279 | 
         
            +
                            ],
         
     | 
| 280 | 
         
            +
                            [
         
     | 
| 281 | 
         
            +
                                "files/teaser.png",
         
     | 
| 282 | 
         
            +
                                "files/teaser_10.npy",
         
     | 
| 283 | 
         
            +
                                10,  # denoise_steps
         
     | 
| 284 | 
         
            +
                            ],
         
     | 
| 285 | 
         
            +
                        ],
         
     | 
| 286 | 
         
            +
                        inputs=inputs,
         
     | 
| 287 | 
         
            +
                        outputs=outputs,
         
     | 
| 288 | 
         
            +
                        cache_examples="lazy",
         
     | 
| 289 | 
         
            +
                    )
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    def clear_fn():
         
     | 
| 292 | 
         
            +
                        return [
         
     | 
| 293 | 
         
            +
                            gr.Image(value=None, interactive=True),
         
     | 
| 294 | 
         
            +
                            gr.File(None, interactive=True),
         
     | 
| 295 | 
         
            +
                            None,
         
     | 
| 296 | 
         
            +
                        ]
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    clear_btn.click(
         
     | 
| 299 | 
         
            +
                        fn=clear_fn,
         
     | 
| 300 | 
         
            +
                        inputs=[],
         
     | 
| 301 | 
         
            +
                        outputs=[
         
     | 
| 302 | 
         
            +
                            input_image,
         
     | 
| 303 | 
         
            +
                            input_sparse,
         
     | 
| 304 | 
         
            +
                            output_slider,
         
     | 
| 305 | 
         
            +
                        ],
         
     | 
| 306 | 
         
            +
                    )
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                    demo.queue(
         
     | 
| 309 | 
         
            +
                        api_open=False,
         
     | 
| 310 | 
         
            +
                    ).launch(
         
     | 
| 311 | 
         
            +
                        server_name="0.0.0.0",
         
     | 
| 312 | 
         
            +
                        server_port=7860,
         
     | 
| 313 | 
         
            +
                    )
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
            def main():
         
     | 
| 317 | 
         
            +
                CHECKPOINT = "prs-eth/marigold-depth-v1-0"
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
                os.system("pip freeze")
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                if "HF_TOKEN_LOGIN" in os.environ:
         
     | 
| 322 | 
         
            +
                    login(token=os.environ["HF_TOKEN_LOGIN"])
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                pipe = MarigoldDepthCompletionPipeline.from_pretrained(CHECKPOINT)
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                try:
         
     | 
| 329 | 
         
            +
                    import xformers
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    pipe.enable_xformers_memory_efficient_attention()
         
     | 
| 332 | 
         
            +
                except:
         
     | 
| 333 | 
         
            +
                    pass  # run without xformers
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                pipe = pipe.to(device)
         
     | 
| 336 | 
         
            +
                run_demo_server(pipe)
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 340 | 
         
            +
                main()
         
     | 
    	
        files/kitti_1.npy
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:d7700e39fa4ccacd974ba2d76c3c4d94016e266f1cb99153a9d7ba89b4d46962
         
     | 
| 3 | 
         
            +
            size 3424384
         
     | 
    	
        files/kitti_1.png
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        files/kitti_2.npy
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:9a26a4c670640071c599e068f9b932e22a261150f3ecda1e46827751629c925f
         
     | 
| 3 | 
         
            +
            size 3424384
         
     | 
    	
        files/kitti_2.png
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        files/teaser.png
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        files/teaser_10.npy
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:32e88cc8bf7a332d656e7c21996f0fc382072eb6a5a192fc6b03fa199842a65e
         
     | 
| 3 | 
         
            +
            size 2457728
         
     | 
    	
        files/teaser_100.npy
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:44bf100a969b99061d597850eb0ed039b1cf79a61f9b9aea40e51fff632a6743
         
     | 
| 3 | 
         
            +
            size 2457728
         
     | 
    	
        files/teaser_1000.npy
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:86c7ef075046d10dd5edee50cca19472b9a268b778a1b1dd01d4474f01b1f3d3
         
     | 
| 3 | 
         
            +
            size 2457728
         
     | 
    	
        marigold_dc.py
    ADDED
    
    | 
         @@ -0,0 +1,186 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            import warnings
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import diffusers
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
            import torch
         
     | 
| 7 | 
         
            +
            from diffusers import MarigoldDepthPipeline
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            warnings.simplefilter(action="ignore", category=FutureWarning)
         
     | 
| 10 | 
         
            +
            diffusers.utils.logging.disable_progress_bar()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class MarigoldDepthCompletionPipeline(MarigoldDepthPipeline):
         
     | 
| 14 | 
         
            +
                def __call__(
         
     | 
| 15 | 
         
            +
                    self,
         
     | 
| 16 | 
         
            +
                    image,
         
     | 
| 17 | 
         
            +
                    sparse_depth,
         
     | 
| 18 | 
         
            +
                    num_inference_steps=50,
         
     | 
| 19 | 
         
            +
                    processing_resolution=0,
         
     | 
| 20 | 
         
            +
                    seed=2024,
         
     | 
| 21 | 
         
            +
                    dry_run=False,
         
     | 
| 22 | 
         
            +
                ):
         
     | 
| 23 | 
         
            +
                    # Resolving variables
         
     | 
| 24 | 
         
            +
                    device = self._execution_device
         
     | 
| 25 | 
         
            +
                    generator = torch.Generator(device=device).manual_seed(seed)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    if dry_run:
         
     | 
| 28 | 
         
            +
                        logging.warning("Dry run mode")
         
     | 
| 29 | 
         
            +
                        for i in range(num_inference_steps):
         
     | 
| 30 | 
         
            +
                            yield np.array(image)[:, :, 0].astype(float), float(np.log(i + 1))
         
     | 
| 31 | 
         
            +
                        return
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    # Check inputs.
         
     | 
| 34 | 
         
            +
                    if num_inference_steps is None:
         
     | 
| 35 | 
         
            +
                        raise ValueError("Invalid num_inference_steps")
         
     | 
| 36 | 
         
            +
                    if type(sparse_depth) is not np.ndarray or sparse_depth.ndim != 2:
         
     | 
| 37 | 
         
            +
                        raise ValueError(
         
     | 
| 38 | 
         
            +
                            "Sparse depth should be a 2D numpy ndarray with zeros at missing positions"
         
     | 
| 39 | 
         
            +
                        )
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    with torch.no_grad():
         
     | 
| 42 | 
         
            +
                        # Prepare empty text conditioning
         
     | 
| 43 | 
         
            +
                        if self.empty_text_embedding is None:
         
     | 
| 44 | 
         
            +
                            prompt = ""
         
     | 
| 45 | 
         
            +
                            text_inputs = self.tokenizer(
         
     | 
| 46 | 
         
            +
                                prompt,
         
     | 
| 47 | 
         
            +
                                padding="do_not_pad",
         
     | 
| 48 | 
         
            +
                                max_length=self.tokenizer.model_max_length,
         
     | 
| 49 | 
         
            +
                                truncation=True,
         
     | 
| 50 | 
         
            +
                                return_tensors="pt",
         
     | 
| 51 | 
         
            +
                            )
         
     | 
| 52 | 
         
            +
                            text_input_ids = text_inputs.input_ids.to(device)
         
     | 
| 53 | 
         
            +
                            self.empty_text_embedding = self.text_encoder(text_input_ids)[
         
     | 
| 54 | 
         
            +
                                0
         
     | 
| 55 | 
         
            +
                            ]  # [1,2,1024]
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    # Preprocess input images
         
     | 
| 58 | 
         
            +
                    image, padding, original_resolution = self.image_processor.preprocess(
         
     | 
| 59 | 
         
            +
                        image,
         
     | 
| 60 | 
         
            +
                        processing_resolution=processing_resolution,
         
     | 
| 61 | 
         
            +
                        device=device,
         
     | 
| 62 | 
         
            +
                        dtype=self.dtype,
         
     | 
| 63 | 
         
            +
                    )  # [N,3,PPH,PPW]
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                    if sparse_depth.shape != original_resolution:
         
     | 
| 66 | 
         
            +
                        raise ValueError(
         
     | 
| 67 | 
         
            +
                            f"Sparse depth dimensions ({sparse_depth.shape}) must match that of the image ({image.shape[-2:]})"
         
     | 
| 68 | 
         
            +
                        )
         
     | 
| 69 | 
         
            +
                    with torch.no_grad():
         
     | 
| 70 | 
         
            +
                        # Encode input image into latent space
         
     | 
| 71 | 
         
            +
                        image_latent, pred_latent = self.prepare_latents(
         
     | 
| 72 | 
         
            +
                            image, None, generator, 1, 1
         
     | 
| 73 | 
         
            +
                        )  # [N*E,4,h,w], [N*E,4,h,w]
         
     | 
| 74 | 
         
            +
                    del image
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    # Preprocess sparse depth
         
     | 
| 77 | 
         
            +
                    sparse_depth = torch.from_numpy(sparse_depth)[None, None].float()
         
     | 
| 78 | 
         
            +
                    sparse_depth = sparse_depth.to(device)
         
     | 
| 79 | 
         
            +
                    sparse_mask = sparse_depth > 0
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    # Set up optimization targets
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    scale = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
         
     | 
| 84 | 
         
            +
                    shift = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
         
     | 
| 85 | 
         
            +
                    pred_latent = torch.nn.Parameter(pred_latent, requires_grad=True)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    sparse_range = (
         
     | 
| 88 | 
         
            +
                        sparse_depth[sparse_mask].max() - sparse_depth[sparse_mask].min()
         
     | 
| 89 | 
         
            +
                    ).item()
         
     | 
| 90 | 
         
            +
                    sparse_lower = (sparse_depth[sparse_mask].min()).item()
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    def affine_to_metric(depth):
         
     | 
| 93 | 
         
            +
                        return (scale**2) * sparse_range * depth + (shift**2) * sparse_lower
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    def latent_to_metric(latent):
         
     | 
| 96 | 
         
            +
                        affine_invariant_prediction = self.decode_prediction(
         
     | 
| 97 | 
         
            +
                            latent
         
     | 
| 98 | 
         
            +
                        )  # [E,1,PPH,PPW]
         
     | 
| 99 | 
         
            +
                        prediction = affine_to_metric(affine_invariant_prediction)
         
     | 
| 100 | 
         
            +
                        prediction = self.image_processor.unpad_image(
         
     | 
| 101 | 
         
            +
                            prediction, padding
         
     | 
| 102 | 
         
            +
                        )  # [E,1,PH,PW]
         
     | 
| 103 | 
         
            +
                        prediction = self.image_processor.resize_antialias(
         
     | 
| 104 | 
         
            +
                            prediction, original_resolution, "bilinear", is_aa=False
         
     | 
| 105 | 
         
            +
                        )  # [1,1,H,W]
         
     | 
| 106 | 
         
            +
                        return prediction
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                    def loss_l1l2(input, target):
         
     | 
| 109 | 
         
            +
                        out_l1 = torch.nn.functional.l1_loss(input, target)
         
     | 
| 110 | 
         
            +
                        out_l2 = torch.nn.functional.mse_loss(input, target)
         
     | 
| 111 | 
         
            +
                        out = out_l1 + out_l2
         
     | 
| 112 | 
         
            +
                        return out, out_l2.sqrt()
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                    optimizer = torch.optim.Adam(
         
     | 
| 115 | 
         
            +
                        [
         
     | 
| 116 | 
         
            +
                            {"params": [scale, shift], "lr": 0.005},
         
     | 
| 117 | 
         
            +
                            {"params": [pred_latent], "lr": 0.05},
         
     | 
| 118 | 
         
            +
                        ]
         
     | 
| 119 | 
         
            +
                    )
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                    # Process the denoising loop
         
     | 
| 122 | 
         
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         
     | 
| 123 | 
         
            +
                    for iter, t in enumerate(
         
     | 
| 124 | 
         
            +
                        self.progress_bar(
         
     | 
| 125 | 
         
            +
                            self.scheduler.timesteps, desc=f"Marigold-DC steps ({str(device)})..."
         
     | 
| 126 | 
         
            +
                        )
         
     | 
| 127 | 
         
            +
                    ):
         
     | 
| 128 | 
         
            +
                        optimizer.zero_grad()
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                        batch_latent = torch.cat([image_latent, pred_latent], dim=1)  # [1,8,h,w]
         
     | 
| 131 | 
         
            +
                        noise = self.unet(
         
     | 
| 132 | 
         
            +
                            batch_latent,
         
     | 
| 133 | 
         
            +
                            t,
         
     | 
| 134 | 
         
            +
                            encoder_hidden_states=self.empty_text_embedding,
         
     | 
| 135 | 
         
            +
                            return_dict=False,
         
     | 
| 136 | 
         
            +
                        )[
         
     | 
| 137 | 
         
            +
                            0
         
     | 
| 138 | 
         
            +
                        ]  # [1,4,h,w]
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                        # Compute pred_epsilon to later rescale the depth latent gradient
         
     | 
| 141 | 
         
            +
                        with torch.no_grad():
         
     | 
| 142 | 
         
            +
                            alpha_prod_t = self.scheduler.alphas_cumprod[t]
         
     | 
| 143 | 
         
            +
                            beta_prod_t = 1 - alpha_prod_t
         
     | 
| 144 | 
         
            +
                            pred_epsilon = (alpha_prod_t**0.5) * noise + (
         
     | 
| 145 | 
         
            +
                                beta_prod_t**0.5
         
     | 
| 146 | 
         
            +
                            ) * pred_latent
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                        step_output = self.scheduler.step(
         
     | 
| 149 | 
         
            +
                            noise, t, pred_latent, generator=generator
         
     | 
| 150 | 
         
            +
                        )
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                        # Preview the final output depth, compute loss with guidance, backprop
         
     | 
| 153 | 
         
            +
                        pred_original_sample = step_output.pred_original_sample
         
     | 
| 154 | 
         
            +
                        current_metric_estimate = latent_to_metric(pred_original_sample)
         
     | 
| 155 | 
         
            +
                        loss, rmse = loss_l1l2(
         
     | 
| 156 | 
         
            +
                            current_metric_estimate[sparse_mask], sparse_depth[sparse_mask]
         
     | 
| 157 | 
         
            +
                        )
         
     | 
| 158 | 
         
            +
                        loss.backward()
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                        # Scale gradients up
         
     | 
| 161 | 
         
            +
                        with torch.no_grad():
         
     | 
| 162 | 
         
            +
                            pred_epsilon_norm = torch.linalg.norm(pred_epsilon).item()
         
     | 
| 163 | 
         
            +
                            depth_latent_grad_norm = torch.linalg.norm(pred_latent.grad).item()
         
     | 
| 164 | 
         
            +
                            scaling_factor = pred_epsilon_norm / max(depth_latent_grad_norm, 1e-8)
         
     | 
| 165 | 
         
            +
                            pred_latent.grad *= scaling_factor
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                        optimizer.step()
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                        with torch.no_grad():
         
     | 
| 170 | 
         
            +
                            pred_latent.data = self.scheduler.step(
         
     | 
| 171 | 
         
            +
                                noise, t, pred_latent, generator=generator
         
     | 
| 172 | 
         
            +
                            ).prev_sample
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                        yield current_metric_estimate, rmse.item()
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                        del (
         
     | 
| 177 | 
         
            +
                            pred_original_sample,
         
     | 
| 178 | 
         
            +
                            current_metric_estimate,
         
     | 
| 179 | 
         
            +
                            step_output,
         
     | 
| 180 | 
         
            +
                            pred_epsilon,
         
     | 
| 181 | 
         
            +
                            noise,
         
     | 
| 182 | 
         
            +
                        )
         
     | 
| 183 | 
         
            +
                        torch.cuda.empty_cache()
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    # Offload all models
         
     | 
| 186 | 
         
            +
                    self.maybe_free_model_hooks()
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,14 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            diffusers==0.31.0
         
     | 
| 2 | 
         
            +
            gradio==4.44.1
         
     | 
| 3 | 
         
            +
            gradio-imageslider==0.0.20
         
     | 
| 4 | 
         
            +
            accelerate
         
     | 
| 5 | 
         
            +
            matplotlib
         
     | 
| 6 | 
         
            +
            numpy
         
     | 
| 7 | 
         
            +
            pillow
         
     | 
| 8 | 
         
            +
            plotly
         
     | 
| 9 | 
         
            +
            scipy
         
     | 
| 10 | 
         
            +
            spaces
         
     | 
| 11 | 
         
            +
            torch
         
     | 
| 12 | 
         
            +
            transformers
         
     | 
| 13 | 
         
            +
            xformers
         
     | 
| 14 | 
         
            +
            pandas
         
     |