# RAG-Based QA System For Recipe ## Setup To install dependencies, use `uv`. First, install `uv` if you haven’t already: ### Ubuntu/Linux: ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ```` ### Windows (PowerShell): ```powershell irm https://astral.sh/uv/install.ps1 | iex ``` Then, install dependencies: ```bash uv sync ``` ## Vector Store: Qdrant This project uses **Qdrant** as a vector store. You can run it locally using Docker: ```bash docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant ``` Or use **Qdrant Cloud**, which is already set up in this project. To create your own cloud instance, go to: [https://qdrant.tech](https://qdrant.tech) ## LLM: ChatGroq This project uses **ChatGroq**. Set the following environment variables: ```env GROQ_API_KEY=your_groq_api_key QDRANT_URL=your_qdrant_cloud_url QDRANT_API_KEY=your_qdrant_api_key ``` ## Run the App To run the project: ```bash streamlit run app.py ``` ## Flow Diagram ![alt text](dia.png) ## Todo - [ ] **Create API with FastAPI** - Set up FastAPI endpoints for question answering. - [ ] **Implement Reranking Strategy for Retrieval** - Add a reranking approach to improve document relevance. - [ ] **Add Pre-Rephrasing Strategy** - Rephrase user questions before querying Qdrant.