Spaces:
Runtime error
Runtime error
init
Browse files- app.py +376 -0
- requirements.txt +13 -0
app.py
ADDED
|
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import baseline dependencies
|
| 2 |
+
import csv
|
| 3 |
+
import time
|
| 4 |
+
from datetime import date
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import pandas_datareader as data
|
| 9 |
+
import requests
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from bs4 import BeautifulSoup
|
| 12 |
+
from plotly import graph_objs as go
|
| 13 |
+
from prophet import Prophet
|
| 14 |
+
from prophet.plot import plot_plotly
|
| 15 |
+
# summarisation (Pegasus) and sentiment analysis (BERT) models
|
| 16 |
+
from transformers import (BertForSequenceClassification, BertTokenizer,
|
| 17 |
+
PegasusTokenizer, TFPegasusForConditionalGeneration,
|
| 18 |
+
pipeline)
|
| 19 |
+
|
| 20 |
+
# Setting streamlit page config to wide
|
| 21 |
+
st.set_page_config(layout='wide')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
| 25 |
+
# Setup summarisation model
|
| 26 |
+
def get_summarisation_model():
|
| 27 |
+
sum_model_name = "human-centered-summarization/financial-summarization-pegasus"
|
| 28 |
+
sum_tokenizer = PegasusTokenizer.from_pretrained(sum_model_name)
|
| 29 |
+
sum_model = TFPegasusForConditionalGeneration.from_pretrained(
|
| 30 |
+
sum_model_name)
|
| 31 |
+
|
| 32 |
+
# returning model and tokenizer
|
| 33 |
+
return sum_model, sum_tokenizer
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
| 37 |
+
# Setup sentiment analysis model
|
| 38 |
+
def get_sentiment_pepeline():
|
| 39 |
+
sen_model_name = "ahmedrachid/FinancialBERT-Sentiment-Analysis"
|
| 40 |
+
sen_tokenizer = BertTokenizer.from_pretrained(sen_model_name)
|
| 41 |
+
sen_model = BertForSequenceClassification.from_pretrained(
|
| 42 |
+
sen_model_name, num_labels=3)
|
| 43 |
+
sentiment_nlp = pipeline("sentiment-analysis",
|
| 44 |
+
model=sen_model, tokenizer=sen_tokenizer)
|
| 45 |
+
|
| 46 |
+
# returning sentiment pipeline
|
| 47 |
+
return sentiment_nlp
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@st.cache(show_spinner=False, suppress_st_warning=True)
|
| 51 |
+
# Get all links from Google News
|
| 52 |
+
def search_urls(ticker, num, date):
|
| 53 |
+
|
| 54 |
+
# https://developers.google.com/custom-search/docs/xml_results_appendices#interfaceLanguages
|
| 55 |
+
|
| 56 |
+
# Request headers and parameters
|
| 57 |
+
headers = {
|
| 58 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36",
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
params = {
|
| 62 |
+
"as_sitesearch": "finance.yahoo.com", # we only want results from Yahoo Finance
|
| 63 |
+
"hl": "en", # language of the interface
|
| 64 |
+
"gl": "us", # country of the search
|
| 65 |
+
"tbm": "nws", # news results
|
| 66 |
+
"lr": "lang_en" # language filter
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
# base URL
|
| 70 |
+
url = "https://www.google.com/search"
|
| 71 |
+
|
| 72 |
+
# search query
|
| 73 |
+
params["as_epq"] = ticker
|
| 74 |
+
params["as_occt"] = ticker
|
| 75 |
+
# number of search results per page
|
| 76 |
+
params["num"] = num
|
| 77 |
+
|
| 78 |
+
# articles timeframe
|
| 79 |
+
# d = past 24h, h = past hour, w = past week, m = pasth month
|
| 80 |
+
if date == "Past week":
|
| 81 |
+
params["as_qdr"] = "w"
|
| 82 |
+
elif date == "Past day":
|
| 83 |
+
params["as_qdr"] = "d"
|
| 84 |
+
|
| 85 |
+
r = requests.get(url, headers=headers, params=params,
|
| 86 |
+
cookies={'CONSENT': 'YES+'})
|
| 87 |
+
time.sleep(5)
|
| 88 |
+
st.write("Searched URL:")
|
| 89 |
+
st.write(r.url) # debugging
|
| 90 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
| 91 |
+
atags = soup.find_all("a", "WlydOe")
|
| 92 |
+
hrefs = [link["href"] for link in atags]
|
| 93 |
+
|
| 94 |
+
return hrefs
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@st.cache(show_spinner=False)
|
| 98 |
+
# Extract title, date, and content of the article from all given URLs
|
| 99 |
+
def search_scrape(urls):
|
| 100 |
+
articles = []
|
| 101 |
+
titles = []
|
| 102 |
+
post_dates = []
|
| 103 |
+
|
| 104 |
+
for url in urls:
|
| 105 |
+
r = requests.get(url)
|
| 106 |
+
time.sleep(5)
|
| 107 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
| 108 |
+
|
| 109 |
+
# title
|
| 110 |
+
title = soup.find("header", "caas-title-wrapper")
|
| 111 |
+
# handling missing titles
|
| 112 |
+
if title is not None:
|
| 113 |
+
titles.append(title.text)
|
| 114 |
+
else:
|
| 115 |
+
titles.append("N/A")
|
| 116 |
+
|
| 117 |
+
# posting date of the article
|
| 118 |
+
date = soup.find("time", "caas-attr-meta-time")
|
| 119 |
+
# handling missing dates
|
| 120 |
+
if date is not None:
|
| 121 |
+
post_dates.append(date.text)
|
| 122 |
+
else:
|
| 123 |
+
post_dates.append("N/A")
|
| 124 |
+
|
| 125 |
+
# article content
|
| 126 |
+
# all the paragraphs within the article
|
| 127 |
+
paragraphs = soup.find_all("div", "caas-body")
|
| 128 |
+
text = [paragraph.text for paragraph in paragraphs]
|
| 129 |
+
# extract only the first 300 words (needs to be done to avoid limit
|
| 130 |
+
# problems with the summarisation model)
|
| 131 |
+
words = " ".join(text).split(" ")[:350]
|
| 132 |
+
article = " ".join(words)
|
| 133 |
+
articles.append(article)
|
| 134 |
+
|
| 135 |
+
return titles, post_dates, articles
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
@st.cache(show_spinner=False)
|
| 139 |
+
# Summarise all given articles using a fine-tuned Pegasus Transformers model
|
| 140 |
+
def summarise_articles(sum_model, sum_tokenizer, articles):
|
| 141 |
+
summaries = []
|
| 142 |
+
for article in articles:
|
| 143 |
+
|
| 144 |
+
# source
|
| 145 |
+
# https://huggingface.co/human-centered-summarization/financial-summarization-pegasus
|
| 146 |
+
input_ids = sum_tokenizer(
|
| 147 |
+
article, return_tensors="tf").input_ids
|
| 148 |
+
output = sum_model.generate(
|
| 149 |
+
input_ids, max_length=55, num_beans=5, early_stopping=True)
|
| 150 |
+
summary = sum_tokenizer.decode(
|
| 151 |
+
output[0], skip_special_tokens=True)
|
| 152 |
+
summaries.append(summary)
|
| 153 |
+
|
| 154 |
+
return summaries
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
@st.cache(show_spinner=False)
|
| 158 |
+
# Join all data into rows
|
| 159 |
+
def create_output_array(titles, post_dates, summarised_articles, sentiment_scores, raw_urls):
|
| 160 |
+
output_array = []
|
| 161 |
+
for idx in range(len(summarised_articles)):
|
| 162 |
+
row = [
|
| 163 |
+
titles[idx],
|
| 164 |
+
post_dates[idx],
|
| 165 |
+
summarised_articles[idx],
|
| 166 |
+
sentiment_scores[idx]["label"].capitalize(),
|
| 167 |
+
"{:.0%}".format(sentiment_scores[idx]["score"]),
|
| 168 |
+
raw_urls[idx]
|
| 169 |
+
]
|
| 170 |
+
output_array.append(row)
|
| 171 |
+
|
| 172 |
+
return output_array
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
@st.cache(show_spinner=False)
|
| 176 |
+
# Convert dataframe to .csv file
|
| 177 |
+
def convert_df(df):
|
| 178 |
+
return df.to_csv().encode("utf-8")
|
| 179 |
+
|
| 180 |
+
# ------------------------------------------------------------------------------
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
@st.cache(show_spinner=False)
|
| 184 |
+
# Load data from Yahoo Finance
|
| 185 |
+
def load_data(ticker, start, end):
|
| 186 |
+
df = data.DataReader(ticker, "yahoo", start, end)
|
| 187 |
+
df.reset_index(inplace=True)
|
| 188 |
+
return df
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
@st.cache(show_spinner=False)
|
| 192 |
+
# Predict stock trend for N years using Prophet
|
| 193 |
+
def predict(df, period):
|
| 194 |
+
|
| 195 |
+
df_train = df[["Date", "Close"]]
|
| 196 |
+
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
|
| 197 |
+
|
| 198 |
+
model = Prophet()
|
| 199 |
+
|
| 200 |
+
model.fit(df_train)
|
| 201 |
+
future = model.make_future_dataframe(periods=period)
|
| 202 |
+
forecast = model.predict(future)
|
| 203 |
+
|
| 204 |
+
return model, forecast
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def main_page():
|
| 208 |
+
|
| 209 |
+
# Financial News Analysis feature
|
| 210 |
+
|
| 211 |
+
# Streamlit text
|
| 212 |
+
|
| 213 |
+
st.sidebar.markdown("## Financial News Analysis")
|
| 214 |
+
st.sidebar.write(
|
| 215 |
+
"Scrape, auto summarise and calculate sentiment for stock and crypto news.")
|
| 216 |
+
|
| 217 |
+
# User input
|
| 218 |
+
ticker = st.text_input("Ticker:", "TSLA")
|
| 219 |
+
num = st.number_input("Number of articles:", 5, 15, 10)
|
| 220 |
+
date = st.selectbox(
|
| 221 |
+
"Timeline:", ["Past week", "Past day"])
|
| 222 |
+
|
| 223 |
+
search = st.button("Search")
|
| 224 |
+
|
| 225 |
+
st.info("Please do not spam the search button")
|
| 226 |
+
st.markdown("---")
|
| 227 |
+
|
| 228 |
+
# If button is pressed
|
| 229 |
+
if search:
|
| 230 |
+
|
| 231 |
+
with st.spinner("Processing articles, please wait..."):
|
| 232 |
+
# Search query and return all articles' links
|
| 233 |
+
raw_urls = search_urls(ticker, num, date)
|
| 234 |
+
|
| 235 |
+
# If any problems happened (e.g., blocked by Google's server) stop app
|
| 236 |
+
if not raw_urls:
|
| 237 |
+
st.error("Please wait a few minutes before trying again")
|
| 238 |
+
else:
|
| 239 |
+
|
| 240 |
+
# Scrap title, posting date and article content from all the URLs
|
| 241 |
+
titles, post_dates, articles = search_scrape(raw_urls)
|
| 242 |
+
|
| 243 |
+
# Summarise all articles
|
| 244 |
+
summarised_articles = summarise_articles(
|
| 245 |
+
sum_model, sum_tokenizer, articles)
|
| 246 |
+
|
| 247 |
+
# Calculate sentiment for all articles
|
| 248 |
+
# source
|
| 249 |
+
# https://huggingface.co/ahmedrachid/FinancialBERT-Sentiment-Analysis
|
| 250 |
+
sentiment_scores = sentiment_pipeline(summarised_articles)
|
| 251 |
+
|
| 252 |
+
# Create dataframe
|
| 253 |
+
output_array = create_output_array(
|
| 254 |
+
titles, post_dates, summarised_articles, sentiment_scores, raw_urls)
|
| 255 |
+
cols = ["Title", "Date", "Summary",
|
| 256 |
+
"Label", "Confidence", "URL"]
|
| 257 |
+
df = pd.DataFrame(output_array, columns=cols)
|
| 258 |
+
|
| 259 |
+
# Visualise dataframe
|
| 260 |
+
st.dataframe(df)
|
| 261 |
+
|
| 262 |
+
# Convert dataframe to csv and let user download it
|
| 263 |
+
csv_file = convert_df(df)
|
| 264 |
+
|
| 265 |
+
# Download CSV
|
| 266 |
+
st.download_button(
|
| 267 |
+
"Save data to CSV", csv_file, "assetsummaries.csv", "text/csv", key="download-csv")
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def page2():
|
| 271 |
+
|
| 272 |
+
# Stock Trend Forecasting feature
|
| 273 |
+
|
| 274 |
+
# Streamlit text
|
| 275 |
+
st.sidebar.markdown("## Stock Trend Forecasting")
|
| 276 |
+
st.sidebar.write(
|
| 277 |
+
"A simple dashboard for stock trend forecasting and analysis.")
|
| 278 |
+
|
| 279 |
+
# Start and end date of data
|
| 280 |
+
start = "2010-01-01"
|
| 281 |
+
end = date.today().strftime("%Y-%m-%d")
|
| 282 |
+
|
| 283 |
+
# Ticker selection
|
| 284 |
+
ticker = st.text_input("Ticker:", "AAPL")
|
| 285 |
+
# Loading data from Yahoo Finance
|
| 286 |
+
df = load_data(ticker, start, end)
|
| 287 |
+
|
| 288 |
+
# Period selection
|
| 289 |
+
n_years = st.number_input("Years of prediction:", 1, 4, 1)
|
| 290 |
+
period = n_years * 365
|
| 291 |
+
|
| 292 |
+
# Start prediction button
|
| 293 |
+
init = st.button("Predict")
|
| 294 |
+
|
| 295 |
+
st.markdown("---")
|
| 296 |
+
|
| 297 |
+
# Visualisation
|
| 298 |
+
# Dropping adj close column
|
| 299 |
+
df = df.drop(["Adj Close"], axis=1)
|
| 300 |
+
|
| 301 |
+
# Visualisation
|
| 302 |
+
# Exploratory analysis
|
| 303 |
+
st.subheader("Exploratory analysis")
|
| 304 |
+
st.write(df.describe())
|
| 305 |
+
|
| 306 |
+
# Plot raw closing data with 100 and 200 days MA (for simple analysis)
|
| 307 |
+
st.subheader("Closing data, MA100 and MA200")
|
| 308 |
+
|
| 309 |
+
ma100 = df.Close.rolling(100).mean()
|
| 310 |
+
ma200 = df.Close.rolling(200).mean()
|
| 311 |
+
|
| 312 |
+
fig = go.Figure()
|
| 313 |
+
fig.update_layout(
|
| 314 |
+
margin=dict(
|
| 315 |
+
l=0,
|
| 316 |
+
r=0,
|
| 317 |
+
b=0,
|
| 318 |
+
t=50,
|
| 319 |
+
pad=4
|
| 320 |
+
)
|
| 321 |
+
)
|
| 322 |
+
fig.add_trace(go.Scatter(x=df["Date"],
|
| 323 |
+
y=df['Close'], name="stock_close"))
|
| 324 |
+
fig.add_trace(go.Scatter(x=df["Date"], y=ma100, name="ma100"))
|
| 325 |
+
fig.add_trace(go.Scatter(x=df["Date"], y=ma200, name="ma200"))
|
| 326 |
+
fig.layout.update(xaxis_rangeslider_visible=True)
|
| 327 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 328 |
+
|
| 329 |
+
# If button is pressed, start forecasting
|
| 330 |
+
if init:
|
| 331 |
+
with st.spinner("Please wait..."):
|
| 332 |
+
model, forecast = predict(df, period)
|
| 333 |
+
|
| 334 |
+
st.markdown("---")
|
| 335 |
+
st.subheader("Forecast data")
|
| 336 |
+
st.write(forecast.tail())
|
| 337 |
+
|
| 338 |
+
st.subheader(f"Forecast plot for {n_years} years")
|
| 339 |
+
|
| 340 |
+
fig = plot_plotly(model, forecast)
|
| 341 |
+
fig.update_layout(
|
| 342 |
+
margin=dict(
|
| 343 |
+
l=0,
|
| 344 |
+
r=0,
|
| 345 |
+
b=0,
|
| 346 |
+
t=0,
|
| 347 |
+
pad=4
|
| 348 |
+
)
|
| 349 |
+
)
|
| 350 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 351 |
+
|
| 352 |
+
st.subheader("Forecast components")
|
| 353 |
+
fig = model.plot_components(forecast)
|
| 354 |
+
st.write(fig)
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
if __name__ == "__main__":
|
| 358 |
+
|
| 359 |
+
with st.spinner("Loading all models..."):
|
| 360 |
+
# Creating summariser and sentiment models
|
| 361 |
+
sum_model, sum_tokenizer = get_summarisation_model()
|
| 362 |
+
sentiment_pipeline = get_sentiment_pepeline()
|
| 363 |
+
|
| 364 |
+
page_names_to_funcs = {
|
| 365 |
+
"Financial News Analysis": main_page,
|
| 366 |
+
"Stock Trend Forecasting": page2
|
| 367 |
+
}
|
| 368 |
+
|
| 369 |
+
st.sidebar.markdown("# Financial Researcher")
|
| 370 |
+
|
| 371 |
+
selected_page = st.sidebar.selectbox(
|
| 372 |
+
"Select a page", page_names_to_funcs.keys())
|
| 373 |
+
|
| 374 |
+
st.sidebar.markdown("---")
|
| 375 |
+
|
| 376 |
+
page_names_to_funcs[selected_page]()
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas==1.4.2
|
| 2 |
+
DateTime==4.7
|
| 3 |
+
numpy==1.22.3
|
| 4 |
+
streamlit==1.12.2
|
| 5 |
+
plotly==5.10.0
|
| 6 |
+
prophet==1.1.1
|
| 7 |
+
pandas-datareader==0.10.0
|
| 8 |
+
requests==2.27.1
|
| 9 |
+
beautifulsoup4==4.11.1
|
| 10 |
+
transformers==4.21.3
|
| 11 |
+
sentencepiece==0.1.97
|
| 12 |
+
tensorflow==2.8.0
|
| 13 |
+
torch==1.11.0
|