Spaces:
Runtime error
Runtime error
gradio app code
Browse files- .gitignore +4 -0
- interface/app.py +151 -0
- interface/model_loader.py +242 -0
- requirements.txt +8 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
venv
|
| 3 |
+
pretrained_models/
|
| 4 |
+
pretrained_models.tar.gz
|
interface/app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from .model_loader import Model
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import cv2
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
# models fron pretrained/latent_transformer folder
|
| 9 |
+
models_files = {
|
| 10 |
+
"anime": "pretrained_models/latent_transformer/anime.pt",
|
| 11 |
+
"car": "pretrained_models/latent_transformer/car.pt",
|
| 12 |
+
"cat": "pretrained_models/latent_transformer/cat.pt",
|
| 13 |
+
"church": "pretrained_models/latent_transformer/church.pt",
|
| 14 |
+
"ffhq": "pretrained_models/latent_transformer/ffhq.pt",
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
models = {name: Model(path) for name, path in models_files.items()}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def cv_to_pil(img):
|
| 21 |
+
return Image.fromarray(cv2.cvtColor(img.astype("uint8"), cv2.COLOR_BGR2RGB))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def random_sample(model_name: str):
|
| 25 |
+
model = models[model_name]
|
| 26 |
+
img, latents = model.random_sample()
|
| 27 |
+
pil_img = cv_to_pil(img)
|
| 28 |
+
return pil_img, model_name, latents
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def zoom(dx, dy, dz, model_state, latents_state):
|
| 32 |
+
model = models[model_state]
|
| 33 |
+
dx = dx
|
| 34 |
+
dy = dy
|
| 35 |
+
dz = dz
|
| 36 |
+
sx = 100
|
| 37 |
+
sy = 100
|
| 38 |
+
stop_points = []
|
| 39 |
+
img, latents_state = model.zoom(
|
| 40 |
+
latents_state, dz, sxsy=[sx, sy], stop_points=stop_points
|
| 41 |
+
) # dz, sxsy=[sx, sy], stop_points=stop_points)
|
| 42 |
+
pil_img = cv_to_pil(img)
|
| 43 |
+
return pil_img, latents_state
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def translate(dx, dy, dz, model_state, latents_state):
|
| 47 |
+
model = models[model_state]
|
| 48 |
+
|
| 49 |
+
dx = dx
|
| 50 |
+
dy = dy
|
| 51 |
+
dz = dz
|
| 52 |
+
sx = 128
|
| 53 |
+
sy = 128
|
| 54 |
+
stop_points = []
|
| 55 |
+
zi = False
|
| 56 |
+
zo = False
|
| 57 |
+
|
| 58 |
+
img, latents_state = model.translate(
|
| 59 |
+
latents_state,
|
| 60 |
+
[dx, dy],
|
| 61 |
+
sxsy=[sx, sy],
|
| 62 |
+
stop_points=stop_points,
|
| 63 |
+
zoom_in=zi,
|
| 64 |
+
zoom_out=zo,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
pil_img = cv_to_pil(img)
|
| 68 |
+
return pil_img, latents_state
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def change_style(image: Image.Image, model_state, latents_state):
|
| 72 |
+
model = models[model_state]
|
| 73 |
+
img, latents_state = model.change_style(latents_state)
|
| 74 |
+
pil_img = cv_to_pil(img)
|
| 75 |
+
return pil_img, latents_state
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def reset(model_state, latents_state):
|
| 79 |
+
model = models[model_state]
|
| 80 |
+
img, latents_state = model.reset(latents_state)
|
| 81 |
+
pil_img = cv_to_pil(img)
|
| 82 |
+
return pil_img, latents_state
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
with gr.Blocks() as block:
|
| 86 |
+
model_state = gr.State(value="cat")
|
| 87 |
+
latents_state = gr.State({})
|
| 88 |
+
gr.Markdown("# UserControllableLT: User controllable latent transformer")
|
| 89 |
+
gr.Markdown("## Select model")
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column():
|
| 92 |
+
model_name = gr.Dropdown(
|
| 93 |
+
choices=list(models_files.keys()),
|
| 94 |
+
label="Select Pretrained Model",
|
| 95 |
+
value="cat",
|
| 96 |
+
)
|
| 97 |
+
with gr.Row():
|
| 98 |
+
button = gr.Button("Random sample")
|
| 99 |
+
reset_btn = gr.Button("Reset")
|
| 100 |
+
|
| 101 |
+
dx = gr.Slider(
|
| 102 |
+
minimum=-128, maximum=128, step_size=0.1, label="dx", value=0.0
|
| 103 |
+
)
|
| 104 |
+
dy = gr.Slider(
|
| 105 |
+
minimum=-128, maximum=128, step_size=0.1, label="dy", value=0.0
|
| 106 |
+
)
|
| 107 |
+
dz = gr.Slider(
|
| 108 |
+
minimum=-128, maximum=128, step_size=0.1, label="dz", value=0.0
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
with gr.Row():
|
| 112 |
+
change_style_bt = gr.Button("Change style")
|
| 113 |
+
|
| 114 |
+
with gr.Column():
|
| 115 |
+
image = gr.Image(type="pil", label="")
|
| 116 |
+
button.click(
|
| 117 |
+
random_sample, inputs=[model_name], outputs=[image, model_state, latents_state]
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
reset_btn.click(
|
| 121 |
+
reset,
|
| 122 |
+
inputs=[model_state, latents_state],
|
| 123 |
+
outputs=[image, latents_state],
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
change_style_bt.click(
|
| 127 |
+
change_style,
|
| 128 |
+
inputs=[image, model_state, latents_state],
|
| 129 |
+
outputs=[image, latents_state],
|
| 130 |
+
)
|
| 131 |
+
dx.change(
|
| 132 |
+
translate,
|
| 133 |
+
inputs=[dx, dy, dz, model_state, latents_state],
|
| 134 |
+
outputs=[image, latents_state],
|
| 135 |
+
show_progress=False,
|
| 136 |
+
)
|
| 137 |
+
dy.change(
|
| 138 |
+
translate,
|
| 139 |
+
inputs=[dx, dy, dz, model_state, latents_state],
|
| 140 |
+
outputs=[image, latents_state],
|
| 141 |
+
show_progress=False,
|
| 142 |
+
)
|
| 143 |
+
dz.change(
|
| 144 |
+
zoom,
|
| 145 |
+
inputs=[dx, dy, dz, model_state, latents_state],
|
| 146 |
+
outputs=[image, latents_state],
|
| 147 |
+
show_progress=False,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
block.launch()
|
interface/model_loader.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from argparse import Namespace
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from models.StyleGANControler import StyleGANControler
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Model:
|
| 10 |
+
def __init__(
|
| 11 |
+
self, checkpoint_path, truncation=0.5, use_average_code_as_input=False
|
| 12 |
+
):
|
| 13 |
+
self.truncation = truncation
|
| 14 |
+
self.use_average_code_as_input = use_average_code_as_input
|
| 15 |
+
ckpt = torch.load(checkpoint_path, map_location="cpu")
|
| 16 |
+
opts = ckpt["opts"]
|
| 17 |
+
opts["checkpoint_path"] = checkpoint_path
|
| 18 |
+
self.opts = Namespace(**ckpt["opts"])
|
| 19 |
+
self.net = StyleGANControler(self.opts)
|
| 20 |
+
self.net.eval()
|
| 21 |
+
self.net.cuda()
|
| 22 |
+
self.target_layers = [0, 1, 2, 3, 4, 5]
|
| 23 |
+
|
| 24 |
+
def random_sample(self):
|
| 25 |
+
z1 = torch.randn(1, 512).to("cuda")
|
| 26 |
+
x1, w1, f1 = self.net.decoder(
|
| 27 |
+
[z1],
|
| 28 |
+
input_is_latent=False,
|
| 29 |
+
randomize_noise=False,
|
| 30 |
+
return_feature_map=True,
|
| 31 |
+
return_latents=True,
|
| 32 |
+
truncation=self.truncation,
|
| 33 |
+
truncation_latent=self.net.latent_avg[0],
|
| 34 |
+
)
|
| 35 |
+
w1_initial = w1.clone()
|
| 36 |
+
x1 = self.net.face_pool(x1)
|
| 37 |
+
image = (
|
| 38 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
| 39 |
+
)
|
| 40 |
+
return (
|
| 41 |
+
image,
|
| 42 |
+
{
|
| 43 |
+
"w1": w1.cpu().detach().numpy(),
|
| 44 |
+
"w1_initial": w1_initial.cpu().detach().numpy(),
|
| 45 |
+
},
|
| 46 |
+
) # return latent vector along with the image
|
| 47 |
+
|
| 48 |
+
def latents_to_tensor(self, latents):
|
| 49 |
+
w1 = latents["w1"]
|
| 50 |
+
w1_initial = latents["w1_initial"]
|
| 51 |
+
|
| 52 |
+
w1 = torch.tensor(w1).to("cuda")
|
| 53 |
+
w1_initial = torch.tensor(w1_initial).to("cuda")
|
| 54 |
+
|
| 55 |
+
x1, w1 = self.net.decoder(
|
| 56 |
+
[w1],
|
| 57 |
+
input_is_latent=True,
|
| 58 |
+
randomize_noise=False,
|
| 59 |
+
return_feature_map=False,
|
| 60 |
+
return_latents=True,
|
| 61 |
+
truncation=self.truncation,
|
| 62 |
+
truncation_latent=self.net.latent_avg[0],
|
| 63 |
+
)
|
| 64 |
+
x1, _, f1 = self.net.decoder(
|
| 65 |
+
[w1_initial],
|
| 66 |
+
input_is_latent=False,
|
| 67 |
+
randomize_noise=False,
|
| 68 |
+
return_feature_map=True,
|
| 69 |
+
return_latents=True,
|
| 70 |
+
truncation=self.truncation,
|
| 71 |
+
truncation_latent=self.net.latent_avg[0],
|
| 72 |
+
)
|
| 73 |
+
return (w1, w1_initial, f1)
|
| 74 |
+
|
| 75 |
+
def zoom(self, latents, dz, sxsy=[0, 0], stop_points=[]):
|
| 76 |
+
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
| 77 |
+
|
| 78 |
+
vec_num = abs(dz) / 5
|
| 79 |
+
dz = 100 * np.sign(dz)
|
| 80 |
+
x = torch.from_numpy(np.array([[[1.0, 0, dz]]], dtype=np.float32)).cuda()
|
| 81 |
+
f1 = torch.nn.functional.interpolate(f1, (256, 256))
|
| 82 |
+
y = f1[:, :, sxsy[1], sxsy[0]].unsqueeze(0)
|
| 83 |
+
|
| 84 |
+
if len(stop_points) > 0:
|
| 85 |
+
x = torch.cat(
|
| 86 |
+
[x, torch.zeros(x.shape[0], len(stop_points), x.shape[2]).cuda()], dim=1
|
| 87 |
+
)
|
| 88 |
+
tmp = []
|
| 89 |
+
for sp in stop_points:
|
| 90 |
+
tmp.append(f1[:, :, sp[1], sp[0]].unsqueeze(1))
|
| 91 |
+
y = torch.cat([y, torch.cat(tmp, dim=1)], dim=1)
|
| 92 |
+
|
| 93 |
+
if not self.use_average_code_as_input:
|
| 94 |
+
w_hat = self.net.encoder(
|
| 95 |
+
w1[:, self.target_layers].detach(),
|
| 96 |
+
x.detach(),
|
| 97 |
+
y.detach(),
|
| 98 |
+
alpha=vec_num,
|
| 99 |
+
)
|
| 100 |
+
w1 = w1.clone()
|
| 101 |
+
w1[:, self.target_layers] = w_hat
|
| 102 |
+
else:
|
| 103 |
+
w_hat = self.net.encoder(
|
| 104 |
+
self.net.latent_avg.unsqueeze(0)[:, self.target_layers].detach(),
|
| 105 |
+
x.detach(),
|
| 106 |
+
y.detach(),
|
| 107 |
+
alpha=vec_num,
|
| 108 |
+
)
|
| 109 |
+
w1 = w1.clone()
|
| 110 |
+
w1[:, self.target_layers] = (
|
| 111 |
+
w1.clone()[:, self.target_layers]
|
| 112 |
+
+ w_hat
|
| 113 |
+
- self.net.latent_avg.unsqueeze(0)[:, self.target_layers]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
x1, _ = self.net.decoder([w1], input_is_latent=True, randomize_noise=False)
|
| 117 |
+
|
| 118 |
+
x1 = self.net.face_pool(x1)
|
| 119 |
+
result = (
|
| 120 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
| 121 |
+
)
|
| 122 |
+
return (
|
| 123 |
+
result,
|
| 124 |
+
{
|
| 125 |
+
"w1": w1.cpu().detach().numpy(),
|
| 126 |
+
"w1_initial": w1_initial.cpu().detach().numpy(),
|
| 127 |
+
},
|
| 128 |
+
) # return latent vector along with the image
|
| 129 |
+
|
| 130 |
+
def translate(
|
| 131 |
+
self, latents, dxy, sxsy=[0, 0], stop_points=[], zoom_in=False, zoom_out=False
|
| 132 |
+
):
|
| 133 |
+
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
| 134 |
+
|
| 135 |
+
dz = -5.0 if zoom_in else 0.0
|
| 136 |
+
dz = 5.0 if zoom_out else dz
|
| 137 |
+
|
| 138 |
+
dxyz = np.array([dxy[0], dxy[1], dz], dtype=np.float32)
|
| 139 |
+
dxy_norm = np.linalg.norm(dxyz[:2], ord=2)
|
| 140 |
+
dxyz[:2] = dxyz[:2] / dxy_norm
|
| 141 |
+
vec_num = dxy_norm / 10
|
| 142 |
+
|
| 143 |
+
x = torch.from_numpy(np.array([[dxyz]], dtype=np.float32)).cuda()
|
| 144 |
+
f1 = torch.nn.functional.interpolate(f1, (256, 256))
|
| 145 |
+
y = f1[:, :, sxsy[1], sxsy[0]].unsqueeze(0)
|
| 146 |
+
|
| 147 |
+
if len(stop_points) > 0:
|
| 148 |
+
x = torch.cat(
|
| 149 |
+
[x, torch.zeros(x.shape[0], len(stop_points), x.shape[2]).cuda()], dim=1
|
| 150 |
+
)
|
| 151 |
+
tmp = []
|
| 152 |
+
for sp in stop_points:
|
| 153 |
+
tmp.append(f1[:, :, sp[1], sp[0]].unsqueeze(1))
|
| 154 |
+
y = torch.cat([y, torch.cat(tmp, dim=1)], dim=1)
|
| 155 |
+
|
| 156 |
+
if not self.use_average_code_as_input:
|
| 157 |
+
w_hat = self.net.encoder(
|
| 158 |
+
w1[:, self.target_layers].detach(),
|
| 159 |
+
x.detach(),
|
| 160 |
+
y.detach(),
|
| 161 |
+
alpha=vec_num,
|
| 162 |
+
)
|
| 163 |
+
w1 = w1.clone()
|
| 164 |
+
w1[:, self.target_layers] = w_hat
|
| 165 |
+
else:
|
| 166 |
+
w_hat = self.net.encoder(
|
| 167 |
+
self.net.latent_avg.unsqueeze(0)[:, self.target_layers].detach(),
|
| 168 |
+
x.detach(),
|
| 169 |
+
y.detach(),
|
| 170 |
+
alpha=vec_num,
|
| 171 |
+
)
|
| 172 |
+
w1 = w1.clone()
|
| 173 |
+
w1[:, self.target_layers] = (
|
| 174 |
+
w1.clone()[:, self.target_layers]
|
| 175 |
+
+ w_hat
|
| 176 |
+
- self.net.latent_avg.unsqueeze(0)[:, self.target_layers]
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
x1, _ = self.net.decoder([w1], input_is_latent=True, randomize_noise=False)
|
| 180 |
+
|
| 181 |
+
x1 = self.net.face_pool(x1)
|
| 182 |
+
result = (
|
| 183 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
| 184 |
+
)
|
| 185 |
+
return (
|
| 186 |
+
result,
|
| 187 |
+
{
|
| 188 |
+
"w1": w1.cpu().detach().numpy(),
|
| 189 |
+
"w1_initial": w1_initial.cpu().detach().numpy(),
|
| 190 |
+
},
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
def change_style(self, latents):
|
| 194 |
+
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
| 195 |
+
|
| 196 |
+
z1 = torch.randn(1, 512).to("cuda")
|
| 197 |
+
x1, w2 = self.net.decoder(
|
| 198 |
+
[z1],
|
| 199 |
+
input_is_latent=False,
|
| 200 |
+
randomize_noise=False,
|
| 201 |
+
return_latents=True,
|
| 202 |
+
truncation=self.truncation,
|
| 203 |
+
truncation_latent=self.net.latent_avg[0],
|
| 204 |
+
)
|
| 205 |
+
w1[:, 6:] = w2.detach()[:, 0]
|
| 206 |
+
x1, w1_new, f1 = self.net.decoder(
|
| 207 |
+
[w1],
|
| 208 |
+
input_is_latent=True,
|
| 209 |
+
randomize_noise=False,
|
| 210 |
+
return_feature_map=True,
|
| 211 |
+
return_latents=True,
|
| 212 |
+
)
|
| 213 |
+
result = (
|
| 214 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
| 215 |
+
)
|
| 216 |
+
return (
|
| 217 |
+
result,
|
| 218 |
+
{
|
| 219 |
+
"w1": w1_new.cpu().detach().numpy(),
|
| 220 |
+
"w1_initial": w1_initial.cpu().detach().numpy(),
|
| 221 |
+
},
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
def reset(self, latents):
|
| 225 |
+
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
| 226 |
+
x1, w1_new, f1 = self.net.decoder(
|
| 227 |
+
[w1_initial],
|
| 228 |
+
input_is_latent=True,
|
| 229 |
+
randomize_noise=False,
|
| 230 |
+
return_feature_map=True,
|
| 231 |
+
return_latents=True,
|
| 232 |
+
)
|
| 233 |
+
result = (
|
| 234 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
| 235 |
+
)
|
| 236 |
+
return (
|
| 237 |
+
result,
|
| 238 |
+
{
|
| 239 |
+
"w1": w1_new.cpu().detach().numpy(),
|
| 240 |
+
"w1_initial": w1_initial.cpu().detach().numpy(),
|
| 241 |
+
},
|
| 242 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
torch
|
| 3 |
+
opencv-python
|
| 4 |
+
Pillow
|
| 5 |
+
einops
|
| 6 |
+
ninja==1.10.2
|
| 7 |
+
einops==0.3.2
|
| 8 |
+
gradio
|