Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,6 +20,8 @@ Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder
|
|
| 20 |
|
| 21 |
device = "cuda"
|
| 22 |
dtype = torch.float16
|
|
|
|
|
|
|
| 23 |
|
| 24 |
processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True)
|
| 25 |
generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b")
|
|
@@ -41,13 +43,12 @@ def generate(image, prompt):
|
|
| 41 |
|
| 42 |
with gr.Blocks() as demo:
|
| 43 |
gr.Markdown(title)
|
| 44 |
-
|
| 45 |
-
with gr.Accordion("Custom Prompt Analysis"):
|
| 46 |
with gr.Row():
|
| 47 |
image_input_custom = gr.Image(type="pil")
|
| 48 |
prompt_input_custom = gr.Textbox(label="Enter your custom prompt")
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
def custom_generate(image, prompt):
|
| 53 |
if isinstance(image, str) and os.path.exists(image):
|
|
@@ -57,18 +58,24 @@ with gr.Blocks() as demo:
|
|
| 57 |
return generate(image, prompt)
|
| 58 |
|
| 59 |
generate_button_custom.click(fn=custom_generate, inputs=[image_input_custom, prompt_input_custom], outputs=output_text_custom)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
cache_examples=True
|
| 69 |
-
)
|
| 70 |
|
| 71 |
-
with gr.Accordion("Anatomical Feature Analysis"):
|
| 72 |
anatomies = [
|
| 73 |
"Airway", "Breathing", "Cardiac", "Diaphragm",
|
| 74 |
"Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, and pacemakers)"
|
|
@@ -79,8 +86,20 @@ with gr.Blocks() as demo:
|
|
| 79 |
generate_button_feature = gr.Button("Analyze Feature")
|
| 80 |
output_text_feature = gr.Textbox(label="Response")
|
| 81 |
generate_button_feature.click(fn=lambda image, feature: generate(image, f'Describe "{feature}"'), inputs=[image_input_feature, prompt_select], outputs=output_text_feature)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
with gr.Accordion("Common Abnormalities Analysis"):
|
| 84 |
common_abnormalities = ["Lung Nodule", "Pleural Effusion", "Pneumonia"]
|
| 85 |
with gr.Row():
|
| 86 |
image_input_abnormality = gr.Image(type="pil")
|
|
@@ -88,5 +107,16 @@ with gr.Blocks() as demo:
|
|
| 88 |
generate_button_abnormality = gr.Button("Analyze Abnormality")
|
| 89 |
output_text_abnormality = gr.Textbox(label="Response")
|
| 90 |
generate_button_abnormality.click(fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), inputs=[image_input_abnormality, abnormality_select], outputs=output_text_abnormality)
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
demo.launch()
|
|
|
|
| 20 |
|
| 21 |
device = "cuda"
|
| 22 |
dtype = torch.float16
|
| 23 |
+
example_images = ["00000174_003.png", "00006596_000.png", "00006663_000.png",
|
| 24 |
+
"00012976_002.png", "00018401_000.png", "00019799_000.png"]
|
| 25 |
|
| 26 |
processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True)
|
| 27 |
generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b")
|
|
|
|
| 43 |
|
| 44 |
with gr.Blocks() as demo:
|
| 45 |
gr.Markdown(title)
|
| 46 |
+
with gr.Accordion("Custom Prompt Analysis", open=False):
|
|
|
|
| 47 |
with gr.Row():
|
| 48 |
image_input_custom = gr.Image(type="pil")
|
| 49 |
prompt_input_custom = gr.Textbox(label="Enter your custom prompt")
|
| 50 |
+
generate_button_custom = gr.Button("Generate")
|
| 51 |
+
output_text_custom = gr.Textbox(label="Response")
|
| 52 |
|
| 53 |
def custom_generate(image, prompt):
|
| 54 |
if isinstance(image, str) and os.path.exists(image):
|
|
|
|
| 58 |
return generate(image, prompt)
|
| 59 |
|
| 60 |
generate_button_custom.click(fn=custom_generate, inputs=[image_input_custom, prompt_input_custom], outputs=output_text_custom)
|
| 61 |
+
custom_prompt_examples = [
|
| 62 |
+
[os.path.join(os.path.dirname(__file__), img), "You are an expert X-Ray Analyst, describe this chest x-ray in detail focussing on the lung condition:"]
|
| 63 |
+
for img in example_images
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
# example_prompt = "65 y/m Chronic cough and weight loss x 6 months. Chest X-rays normal. Consulted multiple pulmonologists with not much benefit. One wise pulmonologist thinks of GERD and sends him to the Gastro department. Can you name the classical finding here?"
|
| 67 |
+
# example_image_path = os.path.join(os.path.dirname(__file__), "hegde.jpg")
|
| 68 |
+
with gr.Accordion("Examples", open=False):
|
| 69 |
|
| 70 |
+
gr.Examples(
|
| 71 |
+
examples=custom_prompt_examples,
|
| 72 |
+
inputs=[image_input_custom, prompt_input_custom],
|
| 73 |
+
outputs=[output_text_custom],
|
| 74 |
+
fn=custom_generate,
|
| 75 |
+
cache_examples=True
|
| 76 |
+
)
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
with gr.Accordion("Anatomical Feature Analysis", open=False):
|
| 79 |
anatomies = [
|
| 80 |
"Airway", "Breathing", "Cardiac", "Diaphragm",
|
| 81 |
"Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, and pacemakers)"
|
|
|
|
| 86 |
generate_button_feature = gr.Button("Analyze Feature")
|
| 87 |
output_text_feature = gr.Textbox(label="Response")
|
| 88 |
generate_button_feature.click(fn=lambda image, feature: generate(image, f'Describe "{feature}"'), inputs=[image_input_feature, prompt_select], outputs=output_text_feature)
|
| 89 |
+
anatomical_feature_examples = [
|
| 90 |
+
[os.path.join(os.path.dirname(__file__), img), "Airway"]
|
| 91 |
+
for img in example_images
|
| 92 |
+
]
|
| 93 |
+
with gr.Accordion("Examples", open=False):
|
| 94 |
+
gr.Examples(
|
| 95 |
+
examples=anatomical_feature_examples,
|
| 96 |
+
inputs=[image_input_feature, prompt_select],
|
| 97 |
+
outputs=[output_text_feature],
|
| 98 |
+
fn=lambda image, feature: generate(image, f'Describe "{feature}"'),
|
| 99 |
+
cache_examples=True
|
| 100 |
+
)
|
| 101 |
|
| 102 |
+
with gr.Accordion("Common Abnormalities Analysis", open=False):
|
| 103 |
common_abnormalities = ["Lung Nodule", "Pleural Effusion", "Pneumonia"]
|
| 104 |
with gr.Row():
|
| 105 |
image_input_abnormality = gr.Image(type="pil")
|
|
|
|
| 107 |
generate_button_abnormality = gr.Button("Analyze Abnormality")
|
| 108 |
output_text_abnormality = gr.Textbox(label="Response")
|
| 109 |
generate_button_abnormality.click(fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), inputs=[image_input_abnormality, abnormality_select], outputs=output_text_abnormality)
|
| 110 |
+
common_abnormalities_examples = [
|
| 111 |
+
[os.path.join(os.path.dirname(__file__), img), "Lung Nodule"]
|
| 112 |
+
for img in example_images
|
| 113 |
+
]
|
| 114 |
+
with gr.Accordion("Examples", open=False):
|
| 115 |
+
gr.Examples(
|
| 116 |
+
examples=common_abnormalities_examples,
|
| 117 |
+
inputs=[image_input_abnormality, abnormality_select],
|
| 118 |
+
outputs=[output_text_abnormality],
|
| 119 |
+
fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'),
|
| 120 |
+
cache_examples=True
|
| 121 |
+
)
|
| 122 |
demo.launch()
|