Spaces:
Running
Running
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -2,22 +2,31 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 5 |
|
| 6 |
# Model configuration
|
| 7 |
MID = "apple/FastVLM-0.5B"
|
| 8 |
IMAGE_TOKEN_INDEX = -200
|
| 9 |
|
| 10 |
-
# Load model and tokenizer
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
-
MID,
|
| 15 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 16 |
-
device_map="auto",
|
| 17 |
-
trust_remote_code=True,
|
| 18 |
-
)
|
| 19 |
-
print("Model loaded successfully!")
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def caption_image(image, custom_prompt=None):
|
| 22 |
"""
|
| 23 |
Generate a caption for the input image.
|
|
@@ -33,6 +42,8 @@ def caption_image(image, custom_prompt=None):
|
|
| 33 |
return "Please upload an image first."
|
| 34 |
|
| 35 |
try:
|
|
|
|
|
|
|
| 36 |
# Convert image to RGB if needed
|
| 37 |
if image.mode != "RGB":
|
| 38 |
image = image.convert("RGB")
|
|
@@ -149,7 +160,7 @@ with gr.Blocks(title="FastVLM Image Captioning") as demo:
|
|
| 149 |
---
|
| 150 |
**Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
|
| 151 |
|
| 152 |
-
**Note:** This
|
| 153 |
"""
|
| 154 |
)
|
| 155 |
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import spaces
|
| 6 |
|
| 7 |
# Model configuration
|
| 8 |
MID = "apple/FastVLM-0.5B"
|
| 9 |
IMAGE_TOKEN_INDEX = -200
|
| 10 |
|
| 11 |
+
# Load model and tokenizer (will be loaded on first GPU allocation)
|
| 12 |
+
tok = None
|
| 13 |
+
model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
def load_model():
|
| 16 |
+
global tok, model
|
| 17 |
+
if tok is None or model is None:
|
| 18 |
+
print("Loading model...")
|
| 19 |
+
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
MID,
|
| 22 |
+
torch_dtype=torch.float16,
|
| 23 |
+
device_map="cuda",
|
| 24 |
+
trust_remote_code=True,
|
| 25 |
+
)
|
| 26 |
+
print("Model loaded successfully!")
|
| 27 |
+
return tok, model
|
| 28 |
+
|
| 29 |
+
@spaces.GPU(duration=60)
|
| 30 |
def caption_image(image, custom_prompt=None):
|
| 31 |
"""
|
| 32 |
Generate a caption for the input image.
|
|
|
|
| 42 |
return "Please upload an image first."
|
| 43 |
|
| 44 |
try:
|
| 45 |
+
# Load model if not already loaded
|
| 46 |
+
tok, model = load_model()
|
| 47 |
# Convert image to RGB if needed
|
| 48 |
if image.mode != "RGB":
|
| 49 |
image = image.convert("RGB")
|
|
|
|
| 160 |
---
|
| 161 |
**Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
|
| 162 |
|
| 163 |
+
**Note:** This Space uses ZeroGPU for dynamic GPU allocation.
|
| 164 |
"""
|
| 165 |
)
|
| 166 |
|