Spaces:
Paused
Paused
Add vector data
Browse files- app.py +61 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain import HuggingFacePipeline
|
| 2 |
+
from langchain.chains import RetrievalQA
|
| 3 |
+
from langchain.document_loaders import BSHTMLLoader, DirectoryLoader
|
| 4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
from langchain.vectorstores import Chroma
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
!git clone https://github.com/TheMITTech/shakespeare
|
| 11 |
+
|
| 12 |
+
from glob import glob
|
| 13 |
+
|
| 14 |
+
files = glob("./shakespeare/**/*.html")
|
| 15 |
+
|
| 16 |
+
import shutil
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
os.mkdir('./data')
|
| 20 |
+
|
| 21 |
+
destination_folder = './data/'
|
| 22 |
+
|
| 23 |
+
for html_file in files:
|
| 24 |
+
shutil.move(html_file, destination_folder + html_file.split("/")[-1])
|
| 25 |
+
bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader)
|
| 26 |
+
|
| 27 |
+
data = bshtml_dir_loader.load()
|
| 28 |
+
|
| 29 |
+
bloomz_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-1b7")
|
| 30 |
+
|
| 31 |
+
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer,
|
| 32 |
+
chunk_size=100,
|
| 33 |
+
chunk_overlap=0,
|
| 34 |
+
separator="\n")
|
| 35 |
+
|
| 36 |
+
documents = text_splitter.split_documents(data)
|
| 37 |
+
|
| 38 |
+
embeddings = HuggingFaceEmbeddings()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
persist_directory = "vector_db"
|
| 43 |
+
|
| 44 |
+
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings,
|
| 45 |
+
persist_directory=persist_directory)
|
| 46 |
+
|
| 47 |
+
llm = HuggingFacePipeline.from_model_id(
|
| 48 |
+
model_id="bigscience/bloomz-1b7",
|
| 49 |
+
task="text-generation",
|
| 50 |
+
model_kwargs={"temperature" : 0, "max_length" : 500})
|
| 51 |
+
|
| 52 |
+
doc_retriever = vectordb.as_retriever()
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
|
| 56 |
+
|
| 57 |
+
def query(query):
|
| 58 |
+
shakespeare_qa.run(query)
|
| 59 |
+
|
| 60 |
+
iface = gr.Interface(fn=query, inputs="text", outputs="text")
|
| 61 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
beautifulsoup4
|
| 3 |
+
transformers
|
| 4 |
+
huggingface-hub
|
| 5 |
+
sentence_transformers
|
| 6 |
+
chromadb
|
| 7 |
+
|