# Aclarador Integration Complete ✅ ## What Was Done Successfully integrated Aclarador's clarity analysis system using Groq API. ### Files Modified 1. **`requirements.txt`** - Added `groq` dependency 2. **`analyzers/analyzer_wrapper.py`** - Complete rewrite to use Groq API 3. **`analyzers/aclarador/`** - Cloned from https://github.com/menpente/aclarador-clean ## How It Works ### Architecture The analyzer uses a **two-mode approach**: 1. **Groq API Mode** (when `GROQ_API_KEY` is set) - Loads system prompt from `analyzers/aclarador/system_prompt.md` - Sends text to Groq's `llama-3.3-70b-versatile` model - Parses AI response for issues, suggestions, and improvements - Calculates clarity scores based on detected issues 2. **Fallback Mode** (when API key not set) - Uses simple heuristics (sentence length, word length) - Provides basic scoring without AI analysis - Useful for testing and development ### Analysis Flow ``` Text Input ↓ Load System Prompt (Spanish clarity principles) ↓ Send to Groq API with temperature=0.3 ↓ Parse Response: - Extract corrected text - Identify issues (long sentences, complex vocab, passive voice) - Extract improvement suggestions ↓ Calculate Scores: - Overall Score (0-100) - Readability Score (based on sentence/word length) - Complexity Score (inverse of detected issues) ↓ Return Analysis Result ``` ## Configuration ### For Local Development Set environment variable: ```bash export GROQ_API_KEY="your-groq-api-key-here" ``` ### For Hugging Face Spaces 1. Go to your Space Settings 2. Navigate to "Repository secrets" 3. Add new secret: - Name: `GROQ_API_KEY` - Value: Your Groq API key 4. Restart the Space ### Getting a Groq API Key 1. Visit https://console.groq.com 2. Sign up for a free account 3. Go to API Keys section 4. Create a new API key 5. Copy the key (keep it secure!) **Note**: Groq offers a generous free tier suitable for this project. ## Testing ### Test Without API Key (Fallback Mode) ```bash python3 -c " from analyzers.analyzer_wrapper import AclaradorAnalyzer analyzer = AclaradorAnalyzer() result = analyzer.analyze('El Ayuntamiento de Madrid establece nuevas normativas.') print(f'Score: {result[\"overall_score\"]:.1f}') print(f'Suggestions: {result[\"suggestions\"]}') " ``` ### Test With API Key ```bash export GROQ_API_KEY="your-key-here" python3 -c " from analyzers.analyzer_wrapper import AclaradorAnalyzer analyzer = AclaradorAnalyzer() result = analyzer.analyze('El Ayuntamiento de Madrid establece nuevas normativas.') print(f'Score: {result[\"overall_score\"]:.1f}') print(f'Issues: {result[\"readability_metrics\"][\"issues_detected\"]}') print(f'Suggestions: {result[\"suggestions\"]}') " ``` ## What the Analyzer Detects Based on Spanish clarity principles from the system prompt: ### Issues Detected - **Long sentences** (>30 words) - **Complex vocabulary** (technical jargon, long words) - **Passive voice** (voz pasiva) - **Redundancies** (repetitive phrases) - **Verbose style** (excessive wordiness) ### Scoring System - **Overall Score**: Weighted average of readability and complexity - **Readability Score**: Based on sentence/word length (optimal: 15-20 word sentences) - **Complexity Score**: Inversely related to number of issues detected ### Output Includes - Clarity scores (0-100, higher = clearer) - Sentence statistics (count, average length, long sentences) - Vocabulary statistics (total words, unique words, lexical diversity) - Detected jargon words - Specific improvement suggestions - Corrected text (from Groq analysis) ## System Prompt The analyzer uses comprehensive Spanish clarity guidelines from `system_prompt.md`: - **Sentence Structure**: Max 30 words, one idea per sentence - **Active Voice**: Prefer "El departamento aprobó" over "Fue aprobado por" - **Clear Vocabulary**: Avoid unnecessary jargon - **Effective Punctuation**: Use periods, commas, colons appropriately - **Digital Adaptation**: Optimize for web reading and SEO ## Cost Considerations - **Groq API**: Free tier with generous limits - **Alternative**: Fallback mode requires no API key (reduced accuracy) - **Hugging Face Spaces**: Completely free hosting ## Next Steps 1. **Deploy to HF Spaces**: ```bash git add . git commit -m "Integrate Aclarador with Groq API" git push ``` 2. **Add API Key** to Space secrets (Settings → Repository secrets) 3. **Test** by triggering manual fetch in Settings tab 4. **Monitor** analysis quality in Dashboard ## Troubleshooting ### "Groq API not available" - Install: `pip install groq` - Or add to requirements.txt (already done) ### "GROQ_API_KEY not found" - Set environment variable locally - Or add to HF Spaces secrets ### "Using fallback analysis" - This is normal when API key is not configured - Analysis still works with basic heuristics - Set GROQ_API_KEY for full AI-powered analysis ### Rate Limits - Groq free tier has limits (check console.groq.com) - Consider spacing out fetches if hitting limits - Monitor logs in HF Spaces ## Files Structure ``` analyzers/ ├── analyzer_wrapper.py # Main integration (uses Groq) ├── aclarador/ │ ├── system_prompt.md # Spanish clarity guidelines │ ├── agent_coordinator.py # (Not used - simplified approach) │ ├── agents/ # (Not used - simplified approach) │ └── app.py # Original Streamlit app (reference) ``` ## Success! 🎉 The integration is complete and ready to deploy. The analyzer will: - ✅ Use Groq API for intelligent clarity analysis - ✅ Fall back to heuristics when API unavailable - ✅ Provide Spanish-specific clarity recommendations - ✅ Generate actionable improvement suggestions - ✅ Work seamlessly with the existing Madrid Analyzer pipeline