Spaces:
Running
on
Zero
Running
on
Zero
| # Import necessary libraries | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution | |
| import gradio as gr # Import Gradio for creating the interface | |
| # Function to upscale an image using Swin2SR | |
| def upscale_image(image, model, processor, device): | |
| # Convert the image to RGB format | |
| image = image.convert("RGB") | |
| # Process the image for the model | |
| inputs = processor(image, return_tensors="pt") | |
| # Move inputs to the same device as model | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| # Perform inference (upscale) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # Move output back to CPU for further processing | |
| output = outputs.reconstruction.data.squeeze().cpu().clamp_(0, 1).numpy() | |
| output = np.moveaxis(output, source=0, destination=-1) | |
| output_image = (output * 255.0).round().astype(np.uint8) # Convert from float32 to uint8 | |
| # Remove 32 pixels from the bottom and right of the image | |
| output_image = output_image[:-32, :-32] | |
| return Image.fromarray(output_image) | |
| def main(image, save_as_jpg=True): | |
| # Check if GPU is available and set the device accordingly | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| realworld_model = "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr" | |
| # Load the Swin2SR model and processor for 4x upscaling | |
| processor = AutoImageProcessor.from_pretrained(realworld_model) | |
| model = Swin2SRForImageSuperResolution.from_pretrained(realworld_model) | |
| # Move the model to the device (GPU or CPU) | |
| model.to(device) | |
| # Upscale the image | |
| upscaled_image = upscale_image(image, model, processor, device) | |
| if save_as_jpg: | |
| # Save the upscaled image as JPG with 98% compression | |
| upscaled_image.save("upscaled_image.jpg", quality=98) | |
| return "upscaled_image.jpg" | |
| else: | |
| # Save the upscaled image as PNG | |
| upscaled_image.save("upscaled_image.png") | |
| return "upscaled_image.png" | |
| # Gradio interface | |
| def gradio_interface(image, save_as_jpg): | |
| return main(image, save_as_jpg) | |
| # Create a Gradio interface | |
| interface = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=[ | |
| gr.inputs.Image(type="pil", label="Upload Image"), | |
| gr.inputs.Checkbox(default=True, label="Save as JPEG"), | |
| ], | |
| outputs=gr.outputs.File(label="Download Upscaled Image"), | |
| title="Image Upscaler", | |
| description="Upload an image, upscale it, and download the new image.", | |
| ) | |
| # Launch the interface | |
| interface.launch() |