Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
# Load Hugging Face OCR model
|
| 7 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
|
| 8 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
|
| 9 |
+
|
| 10 |
+
# Directory where patient records are stored
|
| 11 |
+
PATIENT_RECORDS_DIR = "records/"
|
| 12 |
+
|
| 13 |
+
# Function to extract patient name from filename
|
| 14 |
+
def extract_patient_name(file_name):
|
| 15 |
+
match = re.match(r"([A-Za-z]+[A-Za-z]*)_.*\.(jpg|png|jpeg|pdf)$", file_name)
|
| 16 |
+
if match:
|
| 17 |
+
return match.group(1)
|
| 18 |
+
return None
|
| 19 |
+
|
| 20 |
+
# OCR function
|
| 21 |
+
def extract_text_from_image(image_path):
|
| 22 |
+
image = Image.open(image_path).convert("RGB")
|
| 23 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
| 24 |
+
generated_ids = model.generate(pixel_values)
|
| 25 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 26 |
+
return generated_text.strip()
|
| 27 |
+
|
| 28 |
+
# Save text to patient record
|
| 29 |
+
def save_to_patient_record(patient_name, text):
|
| 30 |
+
os.makedirs(PATIENT_RECORDS_DIR, exist_ok=True)
|
| 31 |
+
filepath = os.path.join(PATIENT_RECORDS_DIR, f"{patient_name}_records.txt")
|
| 32 |
+
with open(filepath, "a") as file:
|
| 33 |
+
file.write("\n\n===== New Upload =====\n")
|
| 34 |
+
file.write(text)
|
| 35 |
+
|
| 36 |
+
# Main process
|
| 37 |
+
def process_uploaded_lab_result(file_path):
|
| 38 |
+
print(f"Processing: {file_path}")
|
| 39 |
+
patient_name = extract_patient_name(os.path.basename(file_path))
|
| 40 |
+
if not patient_name:
|
| 41 |
+
return "❌ Could not determine patient name from filename."
|
| 42 |
+
|
| 43 |
+
ocr_text = extract_text_from_image(file_path)
|
| 44 |
+
save_to_patient_record(patient_name, ocr_text)
|
| 45 |
+
return f"✅ OCR completed and saved under {patient_name}'s record."
|
| 46 |
+
|
| 47 |
+
# Example usage
|
| 48 |
+
if __name__ == "__main__":
|
| 49 |
+
file_to_upload = "JuanDelaCruz_2025-06-13.jpg" # Example uploaded file
|
| 50 |
+
result = process_uploaded_lab_result(file_to_upload)
|
| 51 |
+
print(result)
|