from random import choice import torch from dia.model import Dia torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.triton.unique_kernel_names = True torch._inductor.config.fx_graph_cache = True # debugging torch._logging.set_logs(graph_breaks=True, recompiles=True) model_name = "nari-labs/Dia-1.6B-0626" compute_dtype = "float16" model = Dia.from_pretrained(model_name, compute_dtype=compute_dtype) test_cases = [ "[S1] Dia is an open weights text to dialogue model.", "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face.", "[S1] torch.compile is a new feature in PyTorch that allows you to compile your model with a single line of code.", "[S1] torch.compile is a new feature in PyTorch that allows you to compile your model with a single line of code. [S2] It is a new feature in PyTorch that allows you to compile your model with a single line of code.", ] # Wram up for _ in range(2): text = choice(test_cases) output = model.generate(text, audio_prompt="./example_prompt.mp3", use_torch_compile=True, verbose=True) output = model.generate(text, use_torch_compile=True, verbose=True) # Benchmark for _ in range(10): text = choice(test_cases) output = model.generate(text, use_torch_compile=True, verbose=True) output = model.generate(text, audio_prompt="./example_prompt.mp3", use_torch_compile=True, verbose=True)