Spaces:
Sleeping
Sleeping
File size: 13,754 Bytes
efd6737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
#!/usr/bin/env python3
"""
FastAPI endpoints for IP Assist Lite
Provides REST API for medical information retrieval
"""
import sys
from pathlib import Path
from typing import Optional, List, Dict, Any, Literal
from datetime import datetime
import json
import logging
# Add parent directory to path
sys.path.insert(0, str(Path(__file__).parent.parent))
from fastapi import FastAPI, HTTPException, Query, Body
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from orchestration.langgraph_agent import IPAssistOrchestrator
from retrieval.hybrid_retriever import HybridRetriever
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="IP Assist Lite API",
description="Medical information retrieval system for Interventional Pulmonology",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify actual origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize orchestrator (singleton)
orchestrator = None
def get_orchestrator():
global orchestrator
if orchestrator is None:
logger.info("Initializing orchestrator...")
orchestrator = IPAssistOrchestrator()
logger.info("Orchestrator initialized")
return orchestrator
# Pydantic models for request/response
class QueryRequest(BaseModel):
query: str = Field(..., description="The medical query to process")
top_k: int = Field(5, description="Number of results to return", ge=1, le=20)
use_reranker: bool = Field(True, description="Whether to use cross-encoder reranking")
filters: Optional[Dict[str, Any]] = Field(None, description="Optional filters for retrieval")
class QueryResponse(BaseModel):
query: str
response: str
query_type: str
is_emergency: bool
confidence_score: float
citations: List[Dict[str, Any]]
safety_flags: List[str]
needs_review: bool
timestamp: str
class HealthResponse(BaseModel):
status: str
qdrant_connected: bool
chunks_loaded: bool
embeddings_available: bool
timestamp: str
class SearchRequest(BaseModel):
query: str
search_type: Literal["semantic", "bm25", "exact", "hybrid"] = "hybrid"
top_k: int = Field(10, ge=1, le=50)
authority_filter: Optional[str] = Field(None, pattern="^A[1-4]$")
has_table: Optional[bool] = None
has_contraindication: Optional[bool] = None
class CPTSearchRequest(BaseModel):
cpt_code: str = Field(..., pattern="^\\d{5}$", description="5-digit CPT code")
class StatisticsResponse(BaseModel):
total_chunks: int
total_documents: int
authority_distribution: Dict[str, int]
evidence_distribution: Dict[str, int]
doc_type_distribution: Dict[str, int]
year_range: Dict[str, int]
# Endpoints
@app.get("/", response_model=Dict[str, str])
async def root():
"""Root endpoint with API information."""
return {
"name": "IP Assist Lite API",
"version": "1.0.0",
"description": "Medical information retrieval for Interventional Pulmonology",
"docs": "/docs",
"health": "/health"
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Check the health status of the system."""
try:
orch = get_orchestrator()
# Check Qdrant connection
try:
orch.retriever.qdrant.get_collections()
qdrant_connected = True
except:
qdrant_connected = False
# Check data availability
chunks_loaded = len(orch.retriever.chunks) > 0
embeddings_available = qdrant_connected # Simplified check
return HealthResponse(
status="healthy" if all([qdrant_connected, chunks_loaded]) else "degraded",
qdrant_connected=qdrant_connected,
chunks_loaded=chunks_loaded,
embeddings_available=embeddings_available,
timestamp=datetime.now().isoformat()
)
except Exception as e:
logger.error(f"Health check failed: {e}")
return HealthResponse(
status="unhealthy",
qdrant_connected=False,
chunks_loaded=False,
embeddings_available=False,
timestamp=datetime.now().isoformat()
)
@app.post("/query", response_model=QueryResponse)
async def process_query(request: QueryRequest):
"""
Process a medical query through the orchestration pipeline.
This endpoint:
1. Classifies the query (clinical, procedure, coding, emergency)
2. Retrieves relevant documents
3. Synthesizes a response with citations
4. Applies safety checks
"""
try:
orch = get_orchestrator()
# Process the query
result = orch.process_query(request.query)
# Return response
return QueryResponse(
query=request.query,
response=result["response"],
query_type=result["query_type"],
is_emergency=result["is_emergency"],
confidence_score=result["confidence_score"],
citations=result["citations"],
safety_flags=result["safety_flags"],
needs_review=result["needs_review"],
timestamp=datetime.now().isoformat()
)
except Exception as e:
logger.error(f"Query processing failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/search", response_model=List[Dict[str, Any]])
async def search_documents(request: SearchRequest):
"""
Perform direct search without orchestration.
Useful for debugging or specific search needs.
"""
try:
orch = get_orchestrator()
retriever = orch.retriever
# Build filters
filters = {}
if request.authority_filter:
filters["authority_tier"] = request.authority_filter
if request.has_table is not None:
filters["has_table"] = request.has_table
if request.has_contraindication is not None:
filters["has_contraindication"] = request.has_contraindication
# Perform search based on type
if request.search_type == "hybrid":
results = retriever.retrieve(
query=request.query,
top_k=request.top_k,
filters=filters if filters else None
)
elif request.search_type == "semantic":
query_emb = retriever.query_encoder.encode(request.query, convert_to_numpy=True)
semantic_results = retriever.semantic_search(query_emb, top_k=request.top_k, filters=filters)
results = []
for chunk_id, score in semantic_results:
if chunk_id in retriever.chunk_map:
chunk = retriever.chunk_map[chunk_id]
results.append({
"chunk_id": chunk_id,
"text": chunk["text"][:500],
"score": score,
"doc_id": chunk.get("doc_id"),
"authority_tier": chunk.get("authority_tier"),
"year": chunk.get("year")
})
elif request.search_type == "bm25":
bm25_results = retriever.bm25_search(request.query, top_k=request.top_k)
results = []
for chunk_id, score in bm25_results:
if chunk_id in retriever.chunk_map:
chunk = retriever.chunk_map[chunk_id]
results.append({
"chunk_id": chunk_id,
"text": chunk["text"][:500],
"score": score,
"doc_id": chunk.get("doc_id"),
"authority_tier": chunk.get("authority_tier"),
"year": chunk.get("year")
})
else: # exact
exact_results = retriever.exact_match_search(request.query)
results = []
for chunk_id, score in exact_results:
if chunk_id in retriever.chunk_map:
chunk = retriever.chunk_map[chunk_id]
results.append({
"chunk_id": chunk_id,
"text": chunk["text"][:500],
"score": score,
"doc_id": chunk.get("doc_id"),
"authority_tier": chunk.get("authority_tier"),
"year": chunk.get("year")
})
# Format results for hybrid search
if request.search_type == "hybrid":
formatted_results = []
for r in results:
formatted_results.append({
"chunk_id": r.chunk_id,
"text": r.text[:500],
"score": r.score,
"doc_id": r.doc_id,
"section": r.section_title,
"authority_tier": r.authority_tier,
"evidence_level": r.evidence_level,
"year": r.year,
"doc_type": r.doc_type,
"has_table": r.has_table,
"has_contraindication": r.has_contraindication,
"has_dose_setting": r.has_dose_setting
})
return formatted_results
else:
return results
except Exception as e:
logger.error(f"Search failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/cpt/{cpt_code}")
async def get_cpt_info(cpt_code: str):
"""
Get information about a specific CPT code.
"""
try:
if not cpt_code.isdigit() or len(cpt_code) != 5:
raise HTTPException(status_code=400, detail="Invalid CPT code format")
orch = get_orchestrator()
retriever = orch.retriever
# Search for exact CPT code
if cpt_code in retriever.cpt_index:
chunk_ids = retriever.cpt_index[cpt_code]
results = []
for chunk_id in chunk_ids[:5]: # Limit to 5 results
if chunk_id in retriever.chunk_map:
chunk = retriever.chunk_map[chunk_id]
results.append({
"chunk_id": chunk_id,
"text": chunk["text"],
"doc_id": chunk.get("doc_id"),
"section": chunk.get("section_title"),
"authority_tier": chunk.get("authority_tier"),
"year": chunk.get("year")
})
return {
"cpt_code": cpt_code,
"found": True,
"results": results
}
else:
return {
"cpt_code": cpt_code,
"found": False,
"results": []
}
except Exception as e:
logger.error(f"CPT search failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/statistics", response_model=StatisticsResponse)
async def get_statistics():
"""
Get statistics about the indexed content.
"""
try:
orch = get_orchestrator()
chunks = orch.retriever.chunks
# Calculate statistics
authority_dist = {}
evidence_dist = {}
doc_type_dist = {}
years = []
unique_docs = set()
for chunk in chunks:
# Authority tier
at = chunk.get("authority_tier", "Unknown")
authority_dist[at] = authority_dist.get(at, 0) + 1
# Evidence level
el = chunk.get("evidence_level", "Unknown")
evidence_dist[el] = evidence_dist.get(el, 0) + 1
# Doc type
dt = chunk.get("doc_type", "Unknown")
doc_type_dist[dt] = doc_type_dist.get(dt, 0) + 1
# Year
year = chunk.get("year")
if year:
years.append(year)
# Unique documents
doc_id = chunk.get("doc_id")
if doc_id:
unique_docs.add(doc_id)
return StatisticsResponse(
total_chunks=len(chunks),
total_documents=len(unique_docs),
authority_distribution=authority_dist,
evidence_distribution=evidence_dist,
doc_type_distribution=doc_type_dist,
year_range={
"min": min(years) if years else 0,
"max": max(years) if years else 0
}
)
except Exception as e:
logger.error(f"Statistics calculation failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/emergency")
async def check_emergency(query: str = Body(..., embed=True)):
"""
Quick emergency check for a query.
"""
try:
orch = get_orchestrator()
is_emergency = orch.retriever.detect_emergency(query)
return {
"query": query,
"is_emergency": is_emergency,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Emergency check failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Run with: uvicorn fastapi_app:app --reload --host 0.0.0.0 --port 8000
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |