Spaces:
Runtime error
Runtime error
Create train_pipeline.py
Browse files- train_pipeline.py +104 -0
train_pipeline.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train_pipeline.py
|
| 2 |
+
import re
|
| 3 |
+
import numpy as np
|
| 4 |
+
from jiwer import wer
|
| 5 |
+
from transformers import (
|
| 6 |
+
Wav2Vec2ForCTC,
|
| 7 |
+
Wav2Vec2CTCTokenizer,
|
| 8 |
+
Wav2Vec2FeatureExtractor,
|
| 9 |
+
Wav2Vec2Processor,
|
| 10 |
+
TrainingArguments,
|
| 11 |
+
Trainer
|
| 12 |
+
)
|
| 13 |
+
from datasets import Audio
|
| 14 |
+
import torch
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from preprocess import load_telugu_dataset, normalize_text
|
| 17 |
+
from vocab import build_vocab
|
| 18 |
+
|
| 19 |
+
def prepare_dataset(batch, processor):
|
| 20 |
+
speech = batch["audio"]["array"]
|
| 21 |
+
batch["input_values"] = processor(speech, sampling_rate=16000).input_values[0]
|
| 22 |
+
batch["labels"] = processor.tokenizer(normalize_text(batch["text"])).input_ids
|
| 23 |
+
return batch
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class DataCollatorCTC:
|
| 27 |
+
processor: Wav2Vec2Processor
|
| 28 |
+
padding: bool = True
|
| 29 |
+
|
| 30 |
+
def __call__(self, features):
|
| 31 |
+
inputs = [{"input_values": f["input_values"]} for f in features]
|
| 32 |
+
labels = [{"input_ids": f["labels"]} for f in features]
|
| 33 |
+
|
| 34 |
+
batch = self.processor.pad(inputs, return_tensors="pt")
|
| 35 |
+
with self.processor.as_target_processor():
|
| 36 |
+
labels_batch = self.processor.pad(labels, return_tensors="pt")
|
| 37 |
+
|
| 38 |
+
labels = labels_batch["input_ids"]
|
| 39 |
+
labels[labels == self.processor.tokenizer.pad_token_id] = -100
|
| 40 |
+
batch["labels"] = labels
|
| 41 |
+
return batch
|
| 42 |
+
|
| 43 |
+
def train_model():
|
| 44 |
+
# 1. Load dataset
|
| 45 |
+
ds = load_telugu_dataset()
|
| 46 |
+
ds = ds.train_test_split(test_size=0.1)
|
| 47 |
+
train = ds["train"]
|
| 48 |
+
test = ds["test"]
|
| 49 |
+
|
| 50 |
+
# 2. Build vocab
|
| 51 |
+
build_vocab(train, text_col="text")
|
| 52 |
+
|
| 53 |
+
# 3. Processor
|
| 54 |
+
tokenizer = Wav2Vec2CTCTokenizer("vocab.json", pad_token="[PAD]", unk_token="[UNK]")
|
| 55 |
+
extractor = Wav2Vec2FeatureExtractor(sampling_rate=16000, do_normalize=True)
|
| 56 |
+
processor = Wav2Vec2Processor(extractor, tokenizer)
|
| 57 |
+
|
| 58 |
+
# 4. Prepare
|
| 59 |
+
train = train.map(lambda x: prepare_dataset(x, processor))
|
| 60 |
+
test = test.map(lambda x: prepare_dataset(x, processor))
|
| 61 |
+
|
| 62 |
+
# 5. Load XLS-R model
|
| 63 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
| 64 |
+
"facebook/wav2vec2-xls-r-300m",
|
| 65 |
+
vocab_size=len(tokenizer),
|
| 66 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 67 |
+
ctc_loss_reduction="mean"
|
| 68 |
+
)
|
| 69 |
+
model.freeze_feature_extractor()
|
| 70 |
+
|
| 71 |
+
data_collator = DataCollatorCTC(processor)
|
| 72 |
+
|
| 73 |
+
def compute_metrics(pred):
|
| 74 |
+
pred_ids = np.argmax(pred.predictions, axis=-1)
|
| 75 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
| 76 |
+
|
| 77 |
+
preds = processor.batch_decode(pred_ids)
|
| 78 |
+
refs = processor.batch_decode(pred.label_ids)
|
| 79 |
+
return {"wer": wer(refs, preds)}
|
| 80 |
+
|
| 81 |
+
args = TrainingArguments(
|
| 82 |
+
output_dir="./model",
|
| 83 |
+
per_device_train_batch_size=4,
|
| 84 |
+
per_device_eval_batch_size=4,
|
| 85 |
+
fp16=True,
|
| 86 |
+
evaluation_strategy="epoch",
|
| 87 |
+
save_strategy="epoch",
|
| 88 |
+
num_train_epochs=5,
|
| 89 |
+
push_to_hub=True,
|
| 90 |
+
hub_model_id="your-username/telugu-asr-xlsr"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
trainer = Trainer(
|
| 94 |
+
model=model,
|
| 95 |
+
args=args,
|
| 96 |
+
train_dataset=train,
|
| 97 |
+
eval_dataset=test,
|
| 98 |
+
tokenizer=processor.feature_extractor,
|
| 99 |
+
data_collator=data_collator,
|
| 100 |
+
compute_metrics=compute_metrics,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
trainer.train()
|
| 104 |
+
trainer.push_to_hub()
|