File size: 13,748 Bytes
b298259 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
"""
MedGemma VQA Inference Script
This script performs Visual Question Answering on medical images using Google's MedGemma model.
"""
import os
import json
import torch
from tqdm import tqdm
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, AutoModelForImageTextToText
from transformers import __version__ as transformers_version
# Suppress torch dynamo errors to fall back to eager execution
import torch._dynamo
torch._dynamo.config.suppress_errors = True
print(f"Transformers version: {transformers_version}")
def apply_transformers_workarounds():
"""Apply various workarounds for transformers compatibility issues"""
# Workaround 1: ALL_PARALLEL_STYLES issue
try:
from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
print("Applied ALL_PARALLEL_STYLES workaround")
except ImportError:
pass
# Workaround 2: Attention implementation mapping issue
try:
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.models.gemma3.modeling_gemma3 import (
Gemma3Attention,
Gemma3SdpaAttention,
Gemma3FlashAttention2,
)
# Ensure all attention implementations are properly mapped
attention_mapping = {
"eager": Gemma3Attention,
"sdpa": Gemma3SdpaAttention,
"flash_attention_2": Gemma3FlashAttention2,
}
for key, value in attention_mapping.items():
if key not in ALL_ATTENTION_FUNCTIONS._global_mapping:
ALL_ATTENTION_FUNCTIONS._global_mapping[key] = value
print("Applied attention functions workaround")
except (ImportError, AttributeError) as e:
print(f"Could not apply attention workaround: {e}")
# Workaround 3: Force specific attention implementation
os.environ["TRANSFORMERS_ATTENTION_TYPE"] = "eager"
# Apply all workarounds before loading the model
apply_transformers_workarounds()
class MedGemmaVQAInference:
"""
MedGemma Visual Question Answering Inference Engine
This class handles loading the MedGemma model and processing medical VQA tasks.
"""
def __init__(self, model_name="google/medgemma-4b-it", device="auto"):
"""
Initialize the MedGemma model and processor for VQA tasks
Args:
model_name (str): Name or path of the model
device (str): Device to run inference on ("auto", "cuda", or "cpu")
"""
self.model_name = model_name
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device == "auto" else device
print(f"Using device: {self.device}")
# Load model and processor
self._load_model()
def _load_model(self):
"""Load the model and processor with fallback options"""
print('Loading Model and Processor...')
try:
self.model = AutoModelForImageTextToText.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager", # Force eager attention to avoid compatibility issues
trust_remote_code=True,
)
self.processor = AutoProcessor.from_pretrained(self.model_name, trust_remote_code=True)
print("Model and processor loaded successfully")
except Exception as e:
print(f"Error loading model with eager attention: {e}")
print("Trying alternative loading method...")
# Fallback: try loading without specific attention implementation
self.model = AutoModelForImageTextToText.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
self.processor = AutoProcessor.from_pretrained(self.model_name, trust_remote_code=True)
print("Model loaded with fallback method")
def load_images(self, image_paths, base_path=""):
"""
Load images from paths
Args:
image_paths (list): List of image paths
base_path (str): Base path to prepend to image paths
Returns:
list: List of loaded PIL images (limited to 2 images)
"""
images = []
for img_path in image_paths:
full_path = Path(base_path) / img_path.lstrip('/')
# Handle both .dcm and .png formats
if full_path.suffix == '.dcm':
full_path = full_path.with_suffix('.png')
try:
img = Image.open(str(full_path)).convert('RGB')
images.append(img)
except Exception as e:
print(f"Error loading image {full_path}: {e}")
# Limit to 2 images for optimal performance
return images[:2]
def generate_prompt(self, question: str, options: list, context: str = "") -> str:
"""
Generate a prompt for the medical VQA model
Args:
question (str): The medical question to be answered
options (list): List of option strings
context (str, optional): Additional context or patient information
Returns:
str: Formatted prompt string ready for model input
"""
# Format the question and options as a dictionary
try:
formatted_options = {
opt.strip().split('.')[0].strip(): opt.strip().split('.', 1)[1].strip()
for opt in options if '.' in opt
}
except Exception:
# Fallback if options don't follow expected format
formatted_options = {chr(65 + i): opt.strip() for i, opt in enumerate(options)}
question_data = {
"Question": question.strip(),
"Options": formatted_options
}
context_text = f"Patient information: {context}. " if context else ""
prompt = f"""{context_text}You are a medical expert assistant. Please analyze the provided medical image(s) and answer the multiple-choice question.
Please provide your response in JSON format as follows: {{"answer": "letter_of_correct_option", "explanation": "brief explanation of your choice"}}
Question and Options:
{json.dumps(question_data, indent=2)}
Please select the most appropriate answer and provide a brief medical explanation."""
return prompt
def process_single_case(self, case_data, base_path=""):
"""
Process a single VQA case
Args:
case_data (dict): Case data including images, question, and options
base_path (str): Base path for image loading
Returns:
dict: Results including model's answer and explanation
"""
# Load images
images = self.load_images(case_data['image_path_list'], base_path)
if not images:
return {"error": "No images could be loaded"}
# Generate prompt
prompt = self.generate_prompt(
case_data['question'],
case_data['options'],
case_data.get('context', '')
)
# Create messages for MedGemma chat template
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are an expert medical AI assistant specializing in medical image analysis and diagnosis."}]
},
{
"role": "user",
"content": [
{"type": "text", "text": prompt}
] + [{"type": "image", "image": img} for img in images]
}
]
try:
# Process inputs using chat template
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
# Generate response
with torch.inference_mode():
generation = self.model.generate(
**inputs,
max_new_tokens=300,
do_sample=False,
pad_token_id=self.processor.tokenizer.eos_token_id,
temperature=0.0,
)
generation = generation[0][input_len:]
# Decode the generated text
response = self.processor.decode(generation, skip_special_tokens=True).strip()
# Clean up to free GPU memory
del inputs, generation
if torch.cuda.is_available():
torch.cuda.empty_cache()
return {
"model_response": response,
"question_id": case_data.get('study_id', '') + '_' + case_data.get('task_name', ''),
"question": case_data.get('question', ''),
"options": case_data.get('options', []),
"correct_answer": case_data.get('correct_answer', ''),
"category": case_data.get('category', ''),
"subcategory": case_data.get('subcategory', ''),
"context": case_data.get('context', '')
}
except Exception as e:
return {"error": f"Processing error: {str(e)}"}
def process_batch(self, json_data, base_path="", output_file="results.json"):
"""
Process multiple cases with progress bar and checkpointing
Args:
json_data (dict): Dictionary containing multiple cases
base_path (str): Base path for image loading
output_file (str): Path to save results
Returns:
dict: Results for all cases
"""
# Load existing results if available
results = {}
if os.path.exists(output_file):
try:
with open(output_file, 'r') as f:
results = json.load(f)
# Remove all items with errors to retry them
results = {k: v for k, v in results.items() if 'error' not in v}
print(f"Loaded {len(results)} existing results from {output_file}")
except json.JSONDecodeError:
print(f"Error loading existing results from {output_file}, starting fresh")
# Create progress bar
pbar = tqdm(total=len(json_data), desc="Processing VQA cases")
pbar.update(len(results))
# Process remaining cases
for case_id, case_data in json_data.items():
# Skip if already processed
if case_id in results:
continue
try:
results[case_id] = self.process_single_case(case_data, base_path)
# Save results after each successful case (checkpointing)
with open(output_file, 'w') as f:
json.dump(results, f, indent=2)
# Print errors for debugging
if "error" in results[case_id]:
print(f"\nError processing {case_id}: {results[case_id]['error']}")
except Exception as e:
results[case_id] = {"error": str(e)}
# Also save on error
with open(output_file, 'w') as f:
json.dump(results, f, indent=2)
print(f"\nException processing {case_id}: {str(e)}")
pbar.update(1)
pbar.close()
return results
def main():
"""Main function to run MedGemma VQA inference"""
import argparse
parser = argparse.ArgumentParser(description='MedGemma VQA Inference')
parser.add_argument('--input_file', type=str, required=True,
help='Input JSON file with VQA cases')
parser.add_argument('--output_file', type=str, required=True,
help='Output JSON file for results')
parser.add_argument('--base_path', type=str, default="",
help='Base path for image loading')
parser.add_argument('--model_name', type=str,
default='google/medgemma-4b-it',
help='Model name or path')
args = parser.parse_args()
# Create output directory if it doesn't exist
os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
# Initialize model
print("Initializing MedGemma VQA model...")
inferencer = MedGemmaVQAInference(model_name=args.model_name)
# Load JSON data
print(f"Loading VQA cases from {args.input_file}")
with open(args.input_file, 'r') as f:
cases = json.load(f)
print(f"Found {len(cases)} VQA cases to process")
# Process all cases with progress bar and checkpointing
results = inferencer.process_batch(cases, args.base_path, args.output_file)
print(f"\nProcessing complete. Results saved to {args.output_file}")
print(f"Successfully processed {len([r for r in results.values() if 'error' not in r])} cases")
print(f"Errors in {len([r for r in results.values() if 'error' in r])} cases")
if __name__ == "__main__":
main() |