medrax2 / api.py
Adibvafa
Improve style
9a2c640
raw
history blame
12.8 kB
"""
MedRAX API Module
This module provides a FastAPI-based REST API for the MedRAX medical imaging AI assistant.
It offers endpoints for processing medical images with text queries using the same agent
architecture as the Gradio interface.
The API supports:
- Text-only queries
- Single or multiple image inputs
- Optional custom system prompts
- Automatic thread management for each request
- Tool execution and result aggregation
"""
import uuid
import base64
from pathlib import Path
from typing import List, Optional, Dict, Any
import re
import time
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, ToolMessage
# Import MedRAX components
from medrax.agent import Agent
class QueryRequest(BaseModel):
"""
Request model for text-only queries.
Attributes:
question (str): The question or query to ask the agent
system_prompt (Optional[str]): Custom system prompt to override default
thread_id (Optional[str]): Optional thread ID for conversation continuity
"""
question: str = Field(..., description="The question or query to ask the agent")
system_prompt: Optional[str] = Field(None, description="Custom system prompt to override default")
thread_id: Optional[str] = Field(None, description="Optional thread ID for conversation continuity")
class QueryResponse(BaseModel):
"""
Response model for API queries.
Attributes:
response (str): The agent's text response
thread_id (str): The thread ID used for this conversation
tools_used (List[str]): List of tools that were executed
processing_time (float): Time taken to process the request in seconds
"""
response: str = Field(..., description="The agent's text response")
thread_id: str = Field(..., description="The thread ID used for this conversation")
tools_used: List[str] = Field(..., description="List of tools that were executed")
processing_time: float = Field(..., description="Time taken to process the request in seconds")
class MedRAXAPI:
"""
FastAPI application wrapper for the MedRAX agent.
This class provides a clean interface for creating and managing the API endpoints
while maintaining separation of concerns from the core agent functionality.
"""
def __init__(self, agent: Agent, tools_dict: Dict[str, Any], temp_dir: str = "temp_api"):
"""
Initialize the MedRAX API.
Args:
agent (Agent): The initialized MedRAX agent
tools_dict (Dict[str, Any]): Dictionary of available tools
temp_dir (str): Directory for temporary file storage
"""
self.agent = agent
self.tools_dict = tools_dict
self.temp_dir = Path(temp_dir)
self.temp_dir.mkdir(exist_ok=True)
# Create FastAPI app
self.app = FastAPI(
title="MedRAX API",
description="Medical Reasoning Agent for Chest X-ray Analysis",
version="2.0.0",
docs_url="/docs",
redoc_url="/redoc",
)
# Add CORS middleware
self.app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Register routes
self._register_routes()
def _register_routes(self):
"""Register all API routes."""
@self.app.get("/health")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy", "service": "MedRAX API"}
@self.app.get("/tools")
async def list_tools():
"""List available tools."""
return {"available_tools": list(self.tools_dict.keys()), "total_count": len(self.tools_dict)}
@self.app.post("/query", response_model=QueryResponse)
async def query_text_only(request: QueryRequest):
"""
Process a text-only query without images.
Args:
request (QueryRequest): The query request
Returns:
QueryResponse: The agent's response
"""
return await self._process_query(
question=request.question, system_prompt=request.system_prompt, thread_id=request.thread_id, images=None
)
@self.app.post("/query-with-images", response_model=QueryResponse)
async def query_with_images(
question: str = Form(..., description="The question or query to ask the agent"),
system_prompt: Optional[str] = Form(None, description="Custom system prompt to override default"),
thread_id: Optional[str] = Form(None, description="Optional thread ID for conversation continuity"),
images: List[UploadFile] = File(..., description="One or more medical images to analyze"),
):
"""
Process a query with one or more images.
Args:
question (str): The question or query to ask the agent
system_prompt (Optional[str]): Custom system prompt to override default
thread_id (Optional[str]): Optional thread ID for conversation continuity
images (List[UploadFile]): List of uploaded image files
Returns:
QueryResponse: The agent's response
"""
# Validate image files
if not images or len(images) == 0:
raise HTTPException(status_code=400, detail="At least one image is required")
# Validate file types
allowed_types = {"image/jpeg", "image/jpg", "image/png", "image/bmp", "image/tiff", "application/dicom"}
for image in images:
if image.content_type not in allowed_types:
raise HTTPException(
status_code=400,
detail=f"Unsupported file type: {image.content_type}. Allowed types: {allowed_types}",
)
return await self._process_query(
question=question, system_prompt=system_prompt, thread_id=thread_id, images=images
)
async def _process_query(
self,
question: str,
system_prompt: Optional[str] = None,
thread_id: Optional[str] = None,
images: Optional[List[UploadFile]] = None,
) -> QueryResponse:
"""
Internal method to process queries through the agent.
Args:
question (str): The question to ask
system_prompt (Optional[str]): Custom system prompt
thread_id (Optional[str]): Thread ID for conversation
images (Optional[List[UploadFile]]): List of images
Returns:
QueryResponse: The processed response
"""
start_time = time.time()
# Generate thread ID if not provided
if not thread_id:
thread_id = str(uuid.uuid4())
try:
# Prepare messages
messages = []
image_paths = []
# Handle image uploads
if images:
for i, image in enumerate(images):
# Save uploaded file temporarily
temp_path = self.temp_dir / f"{thread_id}_{i}_{image.filename}"
with open(temp_path, "wb") as buffer:
content = await image.read()
buffer.write(content)
image_paths.append(str(temp_path))
# Add image path for tools
messages.append({"role": "user", "content": f"image_path: {temp_path}"})
# Add base64 encoded image for multimodal processing
image_base64 = base64.b64encode(content).decode("utf-8")
# Determine MIME type
mime_type = "image/jpeg" # Default
if image.content_type:
mime_type = image.content_type
elif temp_path.suffix.lower() in [".png"]:
mime_type = "image/png"
messages.append(
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:{mime_type};base64,{image_base64}"},
}
],
}
)
# Add text question
messages.append({"role": "user", "content": [{"type": "text", "text": question}]})
# Process through agent workflow
response_text = ""
tools_used = []
# Temporarily update system prompt if provided
original_prompt = None
if system_prompt:
original_prompt = self.agent.system_prompt
self.agent.system_prompt = system_prompt
try:
async for chunk in self._stream_agent_response(messages, thread_id):
if chunk.get("type") == "text":
response_text += chunk.get("content", "")
elif chunk.get("type") == "tool":
tools_used.append(chunk.get("tool_name", ""))
finally:
# Restore original system prompt
if original_prompt is not None:
self.agent.system_prompt = original_prompt
# Clean up temporary files
for image_path in image_paths:
try:
Path(image_path).unlink(missing_ok=True)
except Exception:
pass # Ignore cleanup errors
processing_time = time.time() - start_time
return QueryResponse(
response=response_text.strip(),
thread_id=thread_id,
tools_used=list(set(tools_used)), # Remove duplicates
processing_time=processing_time,
)
except Exception as e:
# Clean up on error
for image_path in image_paths:
try:
Path(image_path).unlink(missing_ok=True)
except Exception:
pass
raise HTTPException(status_code=500, detail=f"Error processing query: {str(e)}")
async def _stream_agent_response(self, messages: List[Dict], thread_id: str):
"""
Stream responses from the agent workflow.
Args:
messages (List[Dict]): Messages to process
thread_id (str): Thread ID for the conversation
Yields:
Dict: Response chunks with type and content
"""
try:
for chunk in self.agent.workflow.stream(
{"messages": messages},
{"configurable": {"thread_id": thread_id}},
stream_mode="updates",
):
if not isinstance(chunk, dict):
continue
for node_name, node_output in chunk.items():
if "messages" not in node_output:
continue
for msg in node_output["messages"]:
if isinstance(msg, AIMessage) and msg.content:
# Clean up temp paths from response
clean_content = re.sub(r"temp[^\s]*", "", msg.content).strip()
if clean_content:
yield {"type": "text", "content": clean_content}
elif isinstance(msg, ToolMessage):
# Extract tool name from the message
tool_call_id = msg.tool_call_id
# We'll track tool usage but not include detailed output in API response
yield {"type": "tool", "tool_name": "tool_executed"}
except Exception as e:
yield {"type": "error", "content": str(e)}
def create_api(agent: Agent, tools_dict: Dict[str, Any], temp_dir: str = "temp_api") -> FastAPI:
"""
Create and configure the MedRAX FastAPI application.
Args:
agent (Agent): The initialized MedRAX agent
tools_dict (Dict[str, Any]): Dictionary of available tools
temp_dir (str): Directory for temporary file storage
Returns:
FastAPI: Configured FastAPI application
"""
api = MedRAXAPI(agent, tools_dict, temp_dir)
return api.app