Merge branch 'main' into emily/medgemma
Browse files- .gitignore +2 -0
- README.md +25 -8
- benchmarking/benchmarks/base.py +15 -0
- benchmarking/benchmarks/rexvqa_benchmark.py +121 -2
- benchmarking/cli.py +51 -27
- benchmarking/data/rexvqa/download_rexgradient_images.py +0 -172
- benchmarking/llm_providers/base.py +13 -7
- benchmarking/llm_providers/google_provider.py +2 -4
- benchmarking/llm_providers/medrax_provider.py +102 -67
- benchmarking/llm_providers/openai_provider.py +2 -4
- benchmarking/llm_providers/openrouter_provider.py +2 -4
- benchmarking/runner.py +60 -21
- interface.py +10 -5
- main.py +14 -13
- medrax/agent/__init__.py +1 -1
- medrax/agent/agent.py +111 -21
- medrax/docs/system_prompts.txt +1 -1
- medrax/tools/__init__.py +2 -2
- medrax/tools/browsing/__init__.py +13 -0
- medrax/tools/browsing/duckduckgo.py +403 -0
- medrax/tools/{web_browser.py → browsing/web_browser.py} +0 -0
- medrax/tools/classification/arcplus.py +2 -1
- medrax/tools/llava_med.py +0 -193
- medrax/tools/rag.py +4 -4
- medrax/tools/segmentation/__init__.py +12 -0
- medrax/tools/{medsam2.py → segmentation/medsam2.py} +2 -2
- medrax/tools/{segmentation.py → segmentation/segmentation.py} +0 -0
- medrax/tools/vqa/llava_med.py +14 -7
- medrax/tools/vqa/xray_vqa.py +1 -1
- medrax/tools/{generation.py → xray_generation.py} +0 -0
- medrax/tools/xray_vqa.py +0 -186
- pyproject.toml +2 -1
.gitignore
CHANGED
|
@@ -178,3 +178,5 @@ medrax-pdfs/
|
|
| 178 |
model-weights/
|
| 179 |
|
| 180 |
.DS_Store
|
|
|
|
|
|
|
|
|
| 178 |
model-weights/
|
| 179 |
|
| 180 |
.DS_Store
|
| 181 |
+
|
| 182 |
+
benchmarking/data/
|
README.md
CHANGED
|
@@ -29,6 +29,7 @@ MedRAX is built on a robust technical foundation:
|
|
| 29 |
- **Disease Classification**: Leverages DenseNet-121 from TorchXRayVision for detecting 18 pathology classes
|
| 30 |
- **X-ray Generation**: Utilizes RoentGen for synthetic CXR generation
|
| 31 |
- **Web Browser**: Provides web search capabilities and URL content retrieval using Google Custom Search API
|
|
|
|
| 32 |
- **Python Sandbox**: Executes Python code in a secure, stateful sandbox environment using `langchain-sandbox` and Pyodide. Supports custom data analysis, calculations, and dynamic package installations. Pre-configured with medical analysis packages including pandas, numpy, pydicom, SimpleITK, scikit-image, Pillow, scikit-learn, matplotlib, seaborn, and openpyxl. **Requires Deno runtime.**
|
| 33 |
- **Utilities**: Includes DICOM processing, visualization tools, and custom plotting capabilities
|
| 34 |
<br><br>
|
|
@@ -164,6 +165,7 @@ selected_tools = [
|
|
| 164 |
"ChestXRaySegmentationTool",
|
| 165 |
"PythonSandboxTool", # Python code execution
|
| 166 |
"WebBrowserTool", # Web search and URL access
|
|
|
|
| 167 |
# Add or remove tools as needed
|
| 168 |
]
|
| 169 |
|
|
@@ -179,17 +181,10 @@ agent, tools_dict = initialize_agent(
|
|
| 179 |
|
| 180 |
The following tools will automatically download their model weights when initialized:
|
| 181 |
|
| 182 |
-
### Classification
|
| 183 |
```python
|
| 184 |
# TorchXRayVision-based classifier (original)
|
| 185 |
TorchXRayVisionClassifierTool(device=device)
|
| 186 |
-
|
| 187 |
-
# ArcPlus SwinTransformer-based classifier (new)
|
| 188 |
-
ArcPlusClassifierTool(
|
| 189 |
-
model_path="/path/to/Ark6_swinLarge768_ep50.pth.tar", # Optional
|
| 190 |
-
num_classes=18, # Default
|
| 191 |
-
device=device
|
| 192 |
-
)
|
| 193 |
```
|
| 194 |
|
| 195 |
### Segmentation Tool
|
|
@@ -283,6 +278,7 @@ No additional model weights required:
|
|
| 283 |
ImageVisualizerTool()
|
| 284 |
DicomProcessorTool(temp_dir=temp_dir)
|
| 285 |
WebBrowserTool() # Requires Google Search API credentials
|
|
|
|
| 286 |
```
|
| 287 |
<br>
|
| 288 |
|
|
@@ -301,6 +297,25 @@ ChestXRayGeneratorTool(
|
|
| 301 |
2. Place weights in `{model_dir}/roentgen`
|
| 302 |
3. Optional tool, can be excluded if not needed
|
| 303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
### Knowledge Base Setup (MedicalRAGTool)
|
| 305 |
|
| 306 |
The `MedicalRAGTool` uses a Pinecone vector database to store and retrieve medical knowledge. To use this tool, you need to set up a Pinecone account and a Cohere account.
|
|
@@ -403,6 +418,8 @@ If you are running a local LLM using frameworks like [Ollama](https://ollama.com
|
|
| 403 |
|
| 404 |
**WebBrowserTool**: Requires Google Custom Search API credentials, which can be set in the `.env` file.
|
| 405 |
|
|
|
|
|
|
|
| 406 |
**PythonSandboxTool**: Requires Deno runtime installation:
|
| 407 |
```bash
|
| 408 |
# Verify Deno is installed
|
|
|
|
| 29 |
- **Disease Classification**: Leverages DenseNet-121 from TorchXRayVision for detecting 18 pathology classes
|
| 30 |
- **X-ray Generation**: Utilizes RoentGen for synthetic CXR generation
|
| 31 |
- **Web Browser**: Provides web search capabilities and URL content retrieval using Google Custom Search API
|
| 32 |
+
- **DuckDuckGo Search**: Offers privacy-focused web search capabilities using DuckDuckGo search engine for medical research, fact-checking, and accessing current medical information without API keys
|
| 33 |
- **Python Sandbox**: Executes Python code in a secure, stateful sandbox environment using `langchain-sandbox` and Pyodide. Supports custom data analysis, calculations, and dynamic package installations. Pre-configured with medical analysis packages including pandas, numpy, pydicom, SimpleITK, scikit-image, Pillow, scikit-learn, matplotlib, seaborn, and openpyxl. **Requires Deno runtime.**
|
| 34 |
- **Utilities**: Includes DICOM processing, visualization tools, and custom plotting capabilities
|
| 35 |
<br><br>
|
|
|
|
| 165 |
"ChestXRaySegmentationTool",
|
| 166 |
"PythonSandboxTool", # Python code execution
|
| 167 |
"WebBrowserTool", # Web search and URL access
|
| 168 |
+
"DuckDuckGoSearchTool", # Privacy-focused web search
|
| 169 |
# Add or remove tools as needed
|
| 170 |
]
|
| 171 |
|
|
|
|
| 181 |
|
| 182 |
The following tools will automatically download their model weights when initialized:
|
| 183 |
|
| 184 |
+
### Classification Tool
|
| 185 |
```python
|
| 186 |
# TorchXRayVision-based classifier (original)
|
| 187 |
TorchXRayVisionClassifierTool(device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
```
|
| 189 |
|
| 190 |
### Segmentation Tool
|
|
|
|
| 278 |
ImageVisualizerTool()
|
| 279 |
DicomProcessorTool(temp_dir=temp_dir)
|
| 280 |
WebBrowserTool() # Requires Google Search API credentials
|
| 281 |
+
DuckDuckGoSearchTool() # No API key required, privacy-focused search
|
| 282 |
```
|
| 283 |
<br>
|
| 284 |
|
|
|
|
| 297 |
2. Place weights in `{model_dir}/roentgen`
|
| 298 |
3. Optional tool, can be excluded if not needed
|
| 299 |
|
| 300 |
+
### ArcPlus SwinTransformer-based Classifier
|
| 301 |
+
```python
|
| 302 |
+
ArcPlusClassifierTool(
|
| 303 |
+
model_path="/path/to/Ark6_swinLarge768_ep50.pth.tar", # Optional
|
| 304 |
+
num_classes=18, # Default
|
| 305 |
+
device=device
|
| 306 |
+
)
|
| 307 |
+
```
|
| 308 |
+
|
| 309 |
+
The ArcPlus classifier requires manual setup as the pre-trained model is not publicly available for automatic download:
|
| 310 |
+
|
| 311 |
+
1. **Request Access**: Visit [https://github.com/jlianglab/Ark](https://github.com/jlianglab/Ark) and request the pretrained model through their Google Forms
|
| 312 |
+
2. **Download Model**: Once approved, download the `Ark6_swinLarge768_ep50.pth.tar` file
|
| 313 |
+
3. **Place in Directory**: Drag the downloaded file into your `model-weights` directory
|
| 314 |
+
4. **Initialize Tool**: The tool will automatically look for the model file in the specified `cache_dir`
|
| 315 |
+
|
| 316 |
+
The ArcPlus model provides advanced chest X-ray classification across 6 medical datasets (MIMIC, CheXpert, NIH, RSNA, VinDr, Shenzhen) with 52+ pathology categories.
|
| 317 |
+
```
|
| 318 |
+
|
| 319 |
### Knowledge Base Setup (MedicalRAGTool)
|
| 320 |
|
| 321 |
The `MedicalRAGTool` uses a Pinecone vector database to store and retrieve medical knowledge. To use this tool, you need to set up a Pinecone account and a Cohere account.
|
|
|
|
| 418 |
|
| 419 |
**WebBrowserTool**: Requires Google Custom Search API credentials, which can be set in the `.env` file.
|
| 420 |
|
| 421 |
+
**DuckDuckGoSearchTool**: No API key required. Uses DuckDuckGo's privacy-focused search engine for medical research and fact-checking.
|
| 422 |
+
|
| 423 |
**PythonSandboxTool**: Requires Deno runtime installation:
|
| 424 |
```bash
|
| 425 |
# Verify Deno is installed
|
benchmarking/benchmarks/base.py
CHANGED
|
@@ -4,6 +4,7 @@ from abc import ABC, abstractmethod
|
|
| 4 |
from typing import Dict, List, Optional, Any, Iterator, Tuple
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from pathlib import Path
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
@dataclass
|
|
@@ -31,17 +32,31 @@ class Benchmark(ABC):
|
|
| 31 |
Args:
|
| 32 |
data_dir (str): Directory containing benchmark data
|
| 33 |
**kwargs: Additional configuration parameters
|
|
|
|
| 34 |
"""
|
| 35 |
self.data_dir = Path(data_dir)
|
| 36 |
self.config = kwargs
|
| 37 |
self.data_points = []
|
| 38 |
self._load_data()
|
|
|
|
| 39 |
|
| 40 |
@abstractmethod
|
| 41 |
def _load_data(self) -> None:
|
| 42 |
"""Load benchmark data from the data directory."""
|
| 43 |
pass
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def get_data_point(self, index: int) -> BenchmarkDataPoint:
|
| 46 |
"""Get a specific data point by index.
|
| 47 |
|
|
|
|
| 4 |
from typing import Dict, List, Optional, Any, Iterator, Tuple
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from pathlib import Path
|
| 7 |
+
import random
|
| 8 |
|
| 9 |
|
| 10 |
@dataclass
|
|
|
|
| 32 |
Args:
|
| 33 |
data_dir (str): Directory containing benchmark data
|
| 34 |
**kwargs: Additional configuration parameters
|
| 35 |
+
random_seed (int): Random seed for shuffling data (default: None, no shuffling)
|
| 36 |
"""
|
| 37 |
self.data_dir = Path(data_dir)
|
| 38 |
self.config = kwargs
|
| 39 |
self.data_points = []
|
| 40 |
self._load_data()
|
| 41 |
+
self._shuffle_data()
|
| 42 |
|
| 43 |
@abstractmethod
|
| 44 |
def _load_data(self) -> None:
|
| 45 |
"""Load benchmark data from the data directory."""
|
| 46 |
pass
|
| 47 |
|
| 48 |
+
def _shuffle_data(self) -> None:
|
| 49 |
+
"""Shuffle the data points if a random seed is provided.
|
| 50 |
+
|
| 51 |
+
This method is called automatically after data loading to ensure
|
| 52 |
+
reproducible benchmark runs when a random seed is specified.
|
| 53 |
+
"""
|
| 54 |
+
random_seed = self.config.get("random_seed", None)
|
| 55 |
+
if random_seed is not None:
|
| 56 |
+
random.seed(random_seed)
|
| 57 |
+
random.shuffle(self.data_points)
|
| 58 |
+
print(f"Shuffled {len(self.data_points)} data points with seed {random_seed}")
|
| 59 |
+
|
| 60 |
def get_data_point(self, index: int) -> BenchmarkDataPoint:
|
| 61 |
"""Get a specific data point by index.
|
| 62 |
|
benchmarking/benchmarks/rexvqa_benchmark.py
CHANGED
|
@@ -2,10 +2,12 @@
|
|
| 2 |
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
-
from typing import Dict,
|
| 6 |
from datasets import load_dataset
|
| 7 |
from .base import Benchmark, BenchmarkDataPoint
|
| 8 |
from pathlib import Path
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class ReXVQABenchmark(Benchmark):
|
|
@@ -47,11 +49,128 @@ class ReXVQABenchmark(Benchmark):
|
|
| 47 |
|
| 48 |
super().__init__(data_dir, **kwargs)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def _load_data(self) -> None:
|
| 51 |
"""Load ReXVQA data from local JSON file."""
|
| 52 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Construct path to the JSON file
|
| 54 |
-
json_file_path = os.path.join("benchmarking", "data", "rexvqa", "test_vqa_data.json")
|
| 55 |
|
| 56 |
# Check if file exists
|
| 57 |
if not os.path.exists(json_file_path):
|
|
|
|
| 2 |
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
+
from typing import Dict, Optional, Any
|
| 6 |
from datasets import load_dataset
|
| 7 |
from .base import Benchmark, BenchmarkDataPoint
|
| 8 |
from pathlib import Path
|
| 9 |
+
import subprocess
|
| 10 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
| 11 |
|
| 12 |
|
| 13 |
class ReXVQABenchmark(Benchmark):
|
|
|
|
| 49 |
|
| 50 |
super().__init__(data_dir, **kwargs)
|
| 51 |
|
| 52 |
+
@staticmethod
|
| 53 |
+
def download_rexgradient_images(output_dir: str = "benchmarking/data/rexvqa", repo_id: str = "rajpurkarlab/ReXGradient-160K"):
|
| 54 |
+
"""Download and extract ReXGradient-160K images if not already present."""
|
| 55 |
+
output_dir = Path(output_dir)
|
| 56 |
+
tar_path = output_dir / "deid_png.tar"
|
| 57 |
+
images_dir = output_dir / "images"
|
| 58 |
+
|
| 59 |
+
# Check if images already exist
|
| 60 |
+
if images_dir.exists() and any(images_dir.rglob("*.png")):
|
| 61 |
+
print(f"Images already exist in {images_dir}, skipping download.")
|
| 62 |
+
return
|
| 63 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 64 |
+
print(f"Output directory: {output_dir}")
|
| 65 |
+
try:
|
| 66 |
+
print("Listing files in repository...")
|
| 67 |
+
files = list_repo_files(repo_id, repo_type='dataset')
|
| 68 |
+
part_files = [f for f in files if f.startswith("deid_png.part")]
|
| 69 |
+
if not part_files:
|
| 70 |
+
print("No part files found. The images might be in a different format.")
|
| 71 |
+
return
|
| 72 |
+
print(f"Found {len(part_files)} part files.")
|
| 73 |
+
# Download part files
|
| 74 |
+
for part_file in part_files:
|
| 75 |
+
output_path = output_dir / part_file
|
| 76 |
+
if output_path.exists():
|
| 77 |
+
print(f"Skipping {part_file} (already exists)")
|
| 78 |
+
continue
|
| 79 |
+
print(f"Downloading {part_file}...")
|
| 80 |
+
hf_hub_download(
|
| 81 |
+
repo_id=repo_id,
|
| 82 |
+
filename=part_file,
|
| 83 |
+
local_dir=output_dir,
|
| 84 |
+
local_dir_use_symlinks=False,
|
| 85 |
+
repo_type='dataset'
|
| 86 |
+
)
|
| 87 |
+
# Concatenate part files
|
| 88 |
+
if not tar_path.exists():
|
| 89 |
+
print("\nConcatenating part files...")
|
| 90 |
+
with open(tar_path, 'wb') as tar_file:
|
| 91 |
+
for part_file in sorted(part_files):
|
| 92 |
+
part_path = output_dir / part_file
|
| 93 |
+
if part_path.exists():
|
| 94 |
+
print(f"Adding {part_file}...")
|
| 95 |
+
with open(part_path, 'rb') as f:
|
| 96 |
+
tar_file.write(f.read())
|
| 97 |
+
else:
|
| 98 |
+
print(f"Warning: {part_file} not found, skipping...")
|
| 99 |
+
else:
|
| 100 |
+
print(f"Tar file already exists: {tar_path}")
|
| 101 |
+
# Extract tar file
|
| 102 |
+
if tar_path.exists():
|
| 103 |
+
print("\nExtracting images...")
|
| 104 |
+
images_dir.mkdir(exist_ok=True)
|
| 105 |
+
if any(images_dir.rglob("*.png")):
|
| 106 |
+
print("Images already extracted.")
|
| 107 |
+
else:
|
| 108 |
+
try:
|
| 109 |
+
subprocess.run([
|
| 110 |
+
"tar", "-xf", str(tar_path),
|
| 111 |
+
"-C", str(images_dir)
|
| 112 |
+
], check=True)
|
| 113 |
+
print("Extraction completed!")
|
| 114 |
+
except subprocess.CalledProcessError as e:
|
| 115 |
+
print(f"Error extracting tar file: {e}")
|
| 116 |
+
return
|
| 117 |
+
except FileNotFoundError:
|
| 118 |
+
print("Error: 'tar' command not found. Please install tar or extract manually.")
|
| 119 |
+
return
|
| 120 |
+
png_files = list(images_dir.rglob("*.png"))
|
| 121 |
+
print(f"Extracted {len(png_files)} PNG images to {images_dir}")
|
| 122 |
+
|
| 123 |
+
# Clean up part and tar files after successful extraction
|
| 124 |
+
print("Cleaning up part and tar files...")
|
| 125 |
+
# Remove deid_png.part* files
|
| 126 |
+
for part_file in output_dir.glob("deid_png.part*"):
|
| 127 |
+
try:
|
| 128 |
+
part_file.unlink()
|
| 129 |
+
print(f"Deleted {part_file}")
|
| 130 |
+
except Exception as e:
|
| 131 |
+
print(f"Could not delete {part_file}: {e}")
|
| 132 |
+
# Remove deid_png.tar
|
| 133 |
+
if tar_path.exists():
|
| 134 |
+
try:
|
| 135 |
+
tar_path.unlink()
|
| 136 |
+
print(f"Deleted {tar_path}")
|
| 137 |
+
except Exception as e:
|
| 138 |
+
print(f"Could not delete {tar_path}: {e}")
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"Error: {e}")
|
| 141 |
+
|
| 142 |
+
@staticmethod
|
| 143 |
+
def download_test_vqa_data_json(output_dir: str = "benchmarking/data/rexvqa", repo_id: str = "rajpurkarlab/ReXVQA"):
|
| 144 |
+
"""Download test_vqa_data.json from the ReXVQA HuggingFace repo if not already present."""
|
| 145 |
+
output_dir = Path(output_dir)
|
| 146 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 147 |
+
json_path = output_dir / "metadata" / "test_vqa_data.json"
|
| 148 |
+
if json_path.exists():
|
| 149 |
+
print(f"test_vqa_data.json already exists at {json_path}, skipping download.")
|
| 150 |
+
return
|
| 151 |
+
print(f"Downloading test_vqa_data.json to {json_path}...")
|
| 152 |
+
try:
|
| 153 |
+
hf_hub_download(
|
| 154 |
+
repo_id=repo_id,
|
| 155 |
+
filename="metadata/test_vqa_data.json",
|
| 156 |
+
local_dir=output_dir,
|
| 157 |
+
local_dir_use_symlinks=False,
|
| 158 |
+
repo_type='dataset'
|
| 159 |
+
)
|
| 160 |
+
print("Download complete.")
|
| 161 |
+
except Exception as e:
|
| 162 |
+
print(f"Error downloading test_vqa_data.json: {e}")
|
| 163 |
+
print("You may need to accept the license agreement on HuggingFace.")
|
| 164 |
+
|
| 165 |
def _load_data(self) -> None:
|
| 166 |
"""Load ReXVQA data from local JSON file."""
|
| 167 |
try:
|
| 168 |
+
# Check for images and test_vqa_data.json, download if missing
|
| 169 |
+
self.download_test_vqa_data_json()
|
| 170 |
+
self.download_rexgradient_images()
|
| 171 |
+
|
| 172 |
# Construct path to the JSON file
|
| 173 |
+
json_file_path = os.path.join("benchmarking", "data", "rexvqa", "metadata", "test_vqa_data.json")
|
| 174 |
|
| 175 |
# Check if file exists
|
| 176 |
if not os.path.exists(json_file_path):
|
benchmarking/cli.py
CHANGED
|
@@ -3,34 +3,40 @@
|
|
| 3 |
import argparse
|
| 4 |
import sys
|
| 5 |
|
| 6 |
-
from .llm_providers import
|
| 7 |
from .benchmarks import *
|
| 8 |
from .runner import BenchmarkRunner, BenchmarkRunConfig
|
| 9 |
|
| 10 |
|
| 11 |
-
def create_llm_provider(model_name: str, provider_type: str, **kwargs) -> LLMProvider:
|
| 12 |
"""Create an LLM provider based on the model name and type.
|
| 13 |
|
| 14 |
Args:
|
| 15 |
model_name (str): Name of the model
|
| 16 |
-
provider_type (str): Type of provider (openai, google, openrouter,
|
|
|
|
| 17 |
**kwargs: Additional configuration parameters
|
| 18 |
|
| 19 |
Returns:
|
| 20 |
LLMProvider: The configured LLM provider
|
| 21 |
"""
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
def create_benchmark(benchmark_name: str, data_dir: str, **kwargs) -> Benchmark:
|
|
@@ -63,12 +69,14 @@ def run_benchmark_command(args) -> None:
|
|
| 63 |
# Create LLM provider
|
| 64 |
provider_kwargs = {}
|
| 65 |
|
| 66 |
-
llm_provider = create_llm_provider(args.model, args.provider, **provider_kwargs)
|
| 67 |
|
| 68 |
# Create benchmark
|
| 69 |
benchmark_kwargs = {}
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
benchmark = create_benchmark(args.benchmark, args.data_dir, **benchmark_kwargs)
|
| 72 |
|
| 73 |
# Create runner config
|
| 74 |
config = BenchmarkRunConfig(
|
|
@@ -111,16 +119,32 @@ def main():
|
|
| 111 |
subparsers = parser.add_subparsers(dest="command", help="Available commands")
|
| 112 |
|
| 113 |
# Run benchmark command
|
| 114 |
-
run_parser = subparsers.add_parser("run", help="Run a benchmark")
|
| 115 |
-
run_parser.add_argument("--model", required=True,
|
| 116 |
-
|
| 117 |
-
run_parser.add_argument("--
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
run_parser.add_argument("--
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
run_parser.add_argument("--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
run_parser.set_defaults(func=run_benchmark_command)
|
| 126 |
|
|
|
|
| 3 |
import argparse
|
| 4 |
import sys
|
| 5 |
|
| 6 |
+
from .llm_providers.base import LLMProvider
|
| 7 |
from .benchmarks import *
|
| 8 |
from .runner import BenchmarkRunner, BenchmarkRunConfig
|
| 9 |
|
| 10 |
|
| 11 |
+
def create_llm_provider(model_name: str, provider_type: str, system_prompt: str, **kwargs) -> LLMProvider:
|
| 12 |
"""Create an LLM provider based on the model name and type.
|
| 13 |
|
| 14 |
Args:
|
| 15 |
model_name (str): Name of the model
|
| 16 |
+
provider_type (str): Type of provider (openai, google, openrouter, medrax)
|
| 17 |
+
system_prompt (str): System prompt identifier to load from file
|
| 18 |
**kwargs: Additional configuration parameters
|
| 19 |
|
| 20 |
Returns:
|
| 21 |
LLMProvider: The configured LLM provider
|
| 22 |
"""
|
| 23 |
+
# Lazy imports to avoid slow startup
|
| 24 |
+
if provider_type == "openai":
|
| 25 |
+
from .llm_providers.openai_provider import OpenAIProvider
|
| 26 |
+
provider_class = OpenAIProvider
|
| 27 |
+
elif provider_type == "google":
|
| 28 |
+
from .llm_providers.google_provider import GoogleProvider
|
| 29 |
+
provider_class = GoogleProvider
|
| 30 |
+
elif provider_type == "openrouter":
|
| 31 |
+
from .llm_providers.openrouter_provider import OpenRouterProvider
|
| 32 |
+
provider_class = OpenRouterProvider
|
| 33 |
+
elif provider_type == "medrax":
|
| 34 |
+
from .llm_providers.medrax_provider import MedRAXProvider
|
| 35 |
+
provider_class = MedRAXProvider
|
| 36 |
+
else:
|
| 37 |
+
raise ValueError(f"Unknown provider type: {provider_type}. Available: openai, google, openrouter, medrax")
|
| 38 |
+
|
| 39 |
+
return provider_class(model_name, system_prompt, **kwargs)
|
| 40 |
|
| 41 |
|
| 42 |
def create_benchmark(benchmark_name: str, data_dir: str, **kwargs) -> Benchmark:
|
|
|
|
| 69 |
# Create LLM provider
|
| 70 |
provider_kwargs = {}
|
| 71 |
|
| 72 |
+
llm_provider = create_llm_provider(model_name=args.model, provider_type=args.provider, system_prompt=args.system_prompt, **provider_kwargs)
|
| 73 |
|
| 74 |
# Create benchmark
|
| 75 |
benchmark_kwargs = {}
|
| 76 |
+
if args.random_seed is not None:
|
| 77 |
+
benchmark_kwargs["random_seed"] = args.random_seed
|
| 78 |
|
| 79 |
+
benchmark = create_benchmark(benchmark_name=args.benchmark, data_dir=args.data_dir, **benchmark_kwargs)
|
| 80 |
|
| 81 |
# Create runner config
|
| 82 |
config = BenchmarkRunConfig(
|
|
|
|
| 119 |
subparsers = parser.add_subparsers(dest="command", help="Available commands")
|
| 120 |
|
| 121 |
# Run benchmark command
|
| 122 |
+
run_parser = subparsers.add_parser("run", help="Run a benchmark evaluation")
|
| 123 |
+
run_parser.add_argument("--model", required=True,
|
| 124 |
+
help="Model name (e.g., gpt-4o, gpt-4.1-2025-04-14, gemini-2.5-pro)")
|
| 125 |
+
run_parser.add_argument("--provider", required=True,
|
| 126 |
+
choices=["openai", "google", "openrouter", "medrax"],
|
| 127 |
+
help="LLM provider to use")
|
| 128 |
+
run_parser.add_argument("--system-prompt", required=True,
|
| 129 |
+
choices=["MEDICAL_ASSISTANT", "CHESTAGENTBENCH_PROMPT"],
|
| 130 |
+
help="System prompt: MEDICAL_ASSISTANT (general) or CHESTAGENTBENCH_PROMPT (benchmarks)")
|
| 131 |
+
run_parser.add_argument("--benchmark", required=True,
|
| 132 |
+
choices=["rexvqa", "chestagentbench"],
|
| 133 |
+
help="Benchmark dataset: rexvqa (radiology VQA) or chestagentbench (chest X-ray reasoning)")
|
| 134 |
+
run_parser.add_argument("--data-dir", required=True,
|
| 135 |
+
help="Directory containing benchmark data files")
|
| 136 |
+
run_parser.add_argument("--output-dir", default="benchmark_results",
|
| 137 |
+
help="Output directory for results (default: benchmark_results)")
|
| 138 |
+
run_parser.add_argument("--max-questions", type=int,
|
| 139 |
+
help="Maximum number of questions to process (default: all)")
|
| 140 |
+
run_parser.add_argument("--temperature", type=float, default=1,
|
| 141 |
+
help="Model temperature for response generation (default: 0.7)")
|
| 142 |
+
run_parser.add_argument("--top-p", type=float, default=0.95,
|
| 143 |
+
help="Top-p nucleus sampling parameter (default: 0.95)")
|
| 144 |
+
run_parser.add_argument("--max-tokens", type=int, default=5000,
|
| 145 |
+
help="Maximum tokens per model response (default: 5000)")
|
| 146 |
+
run_parser.add_argument("--random-seed", type=int, default=42,
|
| 147 |
+
help="Random seed for shuffling benchmark data (enables reproducible runs, default: None)")
|
| 148 |
|
| 149 |
run_parser.set_defaults(func=run_benchmark_command)
|
| 150 |
|
benchmarking/data/rexvqa/download_rexgradient_images.py
DELETED
|
@@ -1,172 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
Utility script to download and extract ReXGradient-160K images.
|
| 4 |
-
|
| 5 |
-
This script helps users download the actual PNG images from the ReXGradient-160K dataset,
|
| 6 |
-
which are stored as part files on HuggingFace and need to be concatenated and extracted.
|
| 7 |
-
|
| 8 |
-
Usage:
|
| 9 |
-
python download_rexgradient_images.py --output_dir /path/to/images
|
| 10 |
-
"""
|
| 11 |
-
|
| 12 |
-
import argparse
|
| 13 |
-
import subprocess
|
| 14 |
-
from pathlib import Path
|
| 15 |
-
from huggingface_hub import hf_hub_download, list_repo_files
|
| 16 |
-
import requests
|
| 17 |
-
from tqdm import tqdm
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def download_file(url, output_path, chunk_size=8192):
|
| 21 |
-
"""Download a file with progress bar."""
|
| 22 |
-
response = requests.get(url, stream=True)
|
| 23 |
-
total_size = int(response.headers.get('content-length', 0))
|
| 24 |
-
|
| 25 |
-
with open(output_path, 'wb') as f:
|
| 26 |
-
with tqdm(total=total_size, unit='B', unit_scale=True, desc=output_path.name) as pbar:
|
| 27 |
-
for chunk in response.iter_content(chunk_size=chunk_size):
|
| 28 |
-
if chunk:
|
| 29 |
-
f.write(chunk)
|
| 30 |
-
pbar.update(len(chunk))
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def main():
|
| 34 |
-
parser = argparse.ArgumentParser(description="Download ReXGradient-160K images")
|
| 35 |
-
parser.add_argument(
|
| 36 |
-
"--output_dir",
|
| 37 |
-
type=str,
|
| 38 |
-
required=True,
|
| 39 |
-
help="Directory to save extracted images"
|
| 40 |
-
)
|
| 41 |
-
parser.add_argument(
|
| 42 |
-
"--repo_id",
|
| 43 |
-
type=str,
|
| 44 |
-
default="rajpurkarlab/ReXGradient-160K",
|
| 45 |
-
help="HuggingFace repository ID"
|
| 46 |
-
)
|
| 47 |
-
parser.add_argument(
|
| 48 |
-
"--skip_download",
|
| 49 |
-
action="store_true",
|
| 50 |
-
help="Skip downloading and only extract if files exist"
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
args = parser.parse_args()
|
| 54 |
-
|
| 55 |
-
output_dir = Path(args.output_dir)
|
| 56 |
-
output_dir.mkdir(parents=True, exist_ok=True)
|
| 57 |
-
|
| 58 |
-
print(f"Output directory: {output_dir}")
|
| 59 |
-
|
| 60 |
-
# Check if we need to accept the license first
|
| 61 |
-
print("Note: You may need to accept the dataset license on HuggingFace first:")
|
| 62 |
-
print(f"Visit: https://huggingface.co/datasets/{args.repo_id}")
|
| 63 |
-
print("Click 'Access repository' and accept the license agreement.")
|
| 64 |
-
print()
|
| 65 |
-
|
| 66 |
-
try:
|
| 67 |
-
# List files in the repository
|
| 68 |
-
print("Listing files in repository...")
|
| 69 |
-
files = list_repo_files(args.repo_id, repo_type='dataset')
|
| 70 |
-
part_files = [f for f in files if f.startswith("deid_png.part")]
|
| 71 |
-
|
| 72 |
-
if not part_files:
|
| 73 |
-
print("No part files found. The images might be in a different format.")
|
| 74 |
-
print("Available files:")
|
| 75 |
-
for f in files:
|
| 76 |
-
print(f" - {f}")
|
| 77 |
-
return
|
| 78 |
-
|
| 79 |
-
print(f"Found {len(part_files)} part files:")
|
| 80 |
-
for f in part_files:
|
| 81 |
-
print(f" - {f}")
|
| 82 |
-
|
| 83 |
-
# Download part files
|
| 84 |
-
if not args.skip_download:
|
| 85 |
-
print("\nDownloading part files...")
|
| 86 |
-
for part_file in part_files:
|
| 87 |
-
output_path = output_dir / part_file
|
| 88 |
-
if output_path.exists():
|
| 89 |
-
print(f"Skipping {part_file} (already exists)")
|
| 90 |
-
continue
|
| 91 |
-
|
| 92 |
-
print(f"Downloading {part_file}...")
|
| 93 |
-
try:
|
| 94 |
-
hf_hub_download(
|
| 95 |
-
repo_id=args.repo_id,
|
| 96 |
-
filename=part_file,
|
| 97 |
-
local_dir=output_dir,
|
| 98 |
-
local_dir_use_symlinks=False,
|
| 99 |
-
repo_type='dataset'
|
| 100 |
-
)
|
| 101 |
-
except Exception as e:
|
| 102 |
-
print(f"Error downloading {part_file}: {e}")
|
| 103 |
-
print("You may need to accept the license agreement on HuggingFace.")
|
| 104 |
-
return
|
| 105 |
-
|
| 106 |
-
# Concatenate part files
|
| 107 |
-
tar_path = output_dir / "deid_png.tar"
|
| 108 |
-
if not tar_path.exists():
|
| 109 |
-
print("\nConcatenating part files...")
|
| 110 |
-
with open(tar_path, 'wb') as tar_file:
|
| 111 |
-
for part_file in sorted(part_files):
|
| 112 |
-
part_path = output_dir / part_file
|
| 113 |
-
if part_path.exists():
|
| 114 |
-
print(f"Adding {part_file}...")
|
| 115 |
-
with open(part_path, 'rb') as f:
|
| 116 |
-
tar_file.write(f.read())
|
| 117 |
-
else:
|
| 118 |
-
print(f"Warning: {part_file} not found, skipping...")
|
| 119 |
-
else:
|
| 120 |
-
print(f"Tar file already exists: {tar_path}")
|
| 121 |
-
|
| 122 |
-
# Extract tar file
|
| 123 |
-
if tar_path.exists():
|
| 124 |
-
print("\nExtracting images...")
|
| 125 |
-
images_dir = output_dir / "images"
|
| 126 |
-
images_dir.mkdir(exist_ok=True)
|
| 127 |
-
|
| 128 |
-
# Check if already extracted
|
| 129 |
-
if any(images_dir.glob("*.png")):
|
| 130 |
-
print("Images already extracted.")
|
| 131 |
-
else:
|
| 132 |
-
try:
|
| 133 |
-
subprocess.run([
|
| 134 |
-
"tar", "-xf", str(tar_path),
|
| 135 |
-
"-C", str(images_dir)
|
| 136 |
-
], check=True)
|
| 137 |
-
print("Extraction completed!")
|
| 138 |
-
except subprocess.CalledProcessError as e:
|
| 139 |
-
print(f"Error extracting tar file: {e}")
|
| 140 |
-
return
|
| 141 |
-
except FileNotFoundError:
|
| 142 |
-
print("Error: 'tar' command not found. Please install tar or extract manually.")
|
| 143 |
-
return
|
| 144 |
-
|
| 145 |
-
# Count extracted images
|
| 146 |
-
png_files = list(images_dir.glob("*.png"))
|
| 147 |
-
print(f"Extracted {len(png_files)} PNG images to {images_dir}")
|
| 148 |
-
|
| 149 |
-
# Show some example filenames
|
| 150 |
-
if png_files:
|
| 151 |
-
print("\nExample image filenames:")
|
| 152 |
-
for f in png_files[:5]:
|
| 153 |
-
print(f" - {f.name}")
|
| 154 |
-
if len(png_files) > 5:
|
| 155 |
-
print(f" ... and {len(png_files) - 5} more")
|
| 156 |
-
|
| 157 |
-
print(f"\nSetup complete! Use this directory as images_dir in ReXVQABenchmark:")
|
| 158 |
-
print(f"images_dir='{images_dir}'")
|
| 159 |
-
|
| 160 |
-
except Exception as e:
|
| 161 |
-
print(f"Error: {e}")
|
| 162 |
-
print("\nManual setup instructions:")
|
| 163 |
-
print("1. Visit https://huggingface.co/datasets/rajpurkarlab/ReXGradient-160K")
|
| 164 |
-
print("2. Accept the license agreement")
|
| 165 |
-
print("3. Download the deid_png.part* files")
|
| 166 |
-
print("4. Concatenate: cat deid_png.part* > deid_png.tar")
|
| 167 |
-
print("5. Extract: tar -xf deid_png.tar")
|
| 168 |
-
print("6. Use the extracted directory as images_dir")
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
if __name__ == "__main__":
|
| 172 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmarking/llm_providers/base.py
CHANGED
|
@@ -25,7 +25,7 @@ class LLMResponse:
|
|
| 25 |
content: str
|
| 26 |
usage: Optional[Dict[str, Any]] = None
|
| 27 |
duration: Optional[float] = None
|
| 28 |
-
|
| 29 |
|
| 30 |
|
| 31 |
class LLMProvider(ABC):
|
|
@@ -35,22 +35,24 @@ class LLMProvider(ABC):
|
|
| 35 |
text + image input -> text output across different models and APIs.
|
| 36 |
"""
|
| 37 |
|
| 38 |
-
def __init__(self, model_name: str, **kwargs):
|
| 39 |
"""Initialize the LLM provider.
|
| 40 |
|
| 41 |
Args:
|
| 42 |
model_name (str): Name of the model to use
|
|
|
|
| 43 |
**kwargs: Additional configuration parameters
|
| 44 |
"""
|
| 45 |
self.model_name = model_name
|
| 46 |
self.config = kwargs
|
|
|
|
| 47 |
|
| 48 |
-
#
|
| 49 |
try:
|
| 50 |
prompts = load_prompts_from_file("medrax/docs/system_prompts.txt")
|
| 51 |
-
self.system_prompt = prompts.get(
|
| 52 |
if self.system_prompt is None:
|
| 53 |
-
print(f"Warning: System prompt not found in medrax/docs/system_prompts.txt.")
|
| 54 |
except Exception as e:
|
| 55 |
print(f"Error loading system prompt: {e}")
|
| 56 |
self.system_prompt = None
|
|
@@ -102,8 +104,12 @@ class LLMProvider(ABC):
|
|
| 102 |
Returns:
|
| 103 |
str: Base64 encoded image string
|
| 104 |
"""
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
def _validate_image_paths(self, image_paths: List[str]) -> List[str]:
|
| 109 |
"""Validate that image paths exist and are readable.
|
|
|
|
| 25 |
content: str
|
| 26 |
usage: Optional[Dict[str, Any]] = None
|
| 27 |
duration: Optional[float] = None
|
| 28 |
+
chunk_history: Optional[Any] = None
|
| 29 |
|
| 30 |
|
| 31 |
class LLMProvider(ABC):
|
|
|
|
| 35 |
text + image input -> text output across different models and APIs.
|
| 36 |
"""
|
| 37 |
|
| 38 |
+
def __init__(self, model_name: str, system_prompt: str, **kwargs):
|
| 39 |
"""Initialize the LLM provider.
|
| 40 |
|
| 41 |
Args:
|
| 42 |
model_name (str): Name of the model to use
|
| 43 |
+
system_prompt (str): System prompt identifier to load from file
|
| 44 |
**kwargs: Additional configuration parameters
|
| 45 |
"""
|
| 46 |
self.model_name = model_name
|
| 47 |
self.config = kwargs
|
| 48 |
+
self.prompt_name = system_prompt # Store the original prompt identifier
|
| 49 |
|
| 50 |
+
# Load system prompt content from file
|
| 51 |
try:
|
| 52 |
prompts = load_prompts_from_file("medrax/docs/system_prompts.txt")
|
| 53 |
+
self.system_prompt = prompts.get(system_prompt, None)
|
| 54 |
if self.system_prompt is None:
|
| 55 |
+
print(f"Warning: System prompt '{system_prompt}' not found in medrax/docs/system_prompts.txt.")
|
| 56 |
except Exception as e:
|
| 57 |
print(f"Error loading system prompt: {e}")
|
| 58 |
self.system_prompt = None
|
|
|
|
| 104 |
Returns:
|
| 105 |
str: Base64 encoded image string
|
| 106 |
"""
|
| 107 |
+
try:
|
| 108 |
+
with open(image_path, "rb") as image_file:
|
| 109 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 110 |
+
except Exception as e:
|
| 111 |
+
print(f"ERROR: _encode_image failed for {image_path} (type: {type(image_path)}): {e}")
|
| 112 |
+
raise
|
| 113 |
|
| 114 |
def _validate_image_paths(self, image_paths: List[str]) -> List[str]:
|
| 115 |
"""Validate that image paths exist and are readable.
|
benchmarking/llm_providers/google_provider.py
CHANGED
|
@@ -92,13 +92,11 @@ class GoogleProvider(LLMProvider):
|
|
| 92 |
return LLMResponse(
|
| 93 |
content=content,
|
| 94 |
usage=usage,
|
| 95 |
-
duration=duration
|
| 96 |
-
raw_response=response
|
| 97 |
)
|
| 98 |
|
| 99 |
except Exception as e:
|
| 100 |
return LLMResponse(
|
| 101 |
content=f"Error: {str(e)}",
|
| 102 |
-
duration=time.time() - start_time
|
| 103 |
-
raw_response=None
|
| 104 |
)
|
|
|
|
| 92 |
return LLMResponse(
|
| 93 |
content=content,
|
| 94 |
usage=usage,
|
| 95 |
+
duration=duration
|
|
|
|
| 96 |
)
|
| 97 |
|
| 98 |
except Exception as e:
|
| 99 |
return LLMResponse(
|
| 100 |
content=f"Error: {str(e)}",
|
| 101 |
+
duration=time.time() - start_time
|
|
|
|
| 102 |
)
|
benchmarking/llm_providers/medrax_provider.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
"""MedRAX LLM provider implementation."""
|
| 2 |
|
| 3 |
import time
|
| 4 |
-
import
|
| 5 |
-
from pathlib import Path
|
| 6 |
|
| 7 |
from .base import LLMProvider, LLMRequest, LLMResponse
|
|
|
|
| 8 |
|
| 9 |
from medrax.rag.rag import RAGConfig
|
| 10 |
from main import initialize_agent
|
|
@@ -13,18 +13,19 @@ from main import initialize_agent
|
|
| 13 |
class MedRAXProvider(LLMProvider):
|
| 14 |
"""MedRAX LLM provider that uses the full MedRAX agent system."""
|
| 15 |
|
| 16 |
-
def __init__(self, model_name: str, **kwargs):
|
| 17 |
"""Initialize MedRAX provider.
|
| 18 |
|
| 19 |
Args:
|
| 20 |
model_name (str): Base LLM model name (e.g., "gpt-4.1-2025-04-14")
|
|
|
|
| 21 |
**kwargs: Additional configuration parameters
|
| 22 |
"""
|
| 23 |
self.model_name = model_name
|
| 24 |
self.agent = None
|
| 25 |
self.tools_dict = None
|
| 26 |
-
|
| 27 |
-
super().__init__(model_name, **kwargs)
|
| 28 |
|
| 29 |
def _setup(self) -> None:
|
| 30 |
"""Set up MedRAX agent system."""
|
|
@@ -32,19 +33,14 @@ class MedRAXProvider(LLMProvider):
|
|
| 32 |
print("Starting server...")
|
| 33 |
|
| 34 |
selected_tools = [
|
| 35 |
-
|
| 36 |
-
# "DicomProcessorTool", # For processing DICOM medical image files
|
| 37 |
-
# "TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
|
| 38 |
-
# "ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
|
| 39 |
-
# "ChestXRaySegmentationTool", # For segmenting anatomical regions in chest X-rays
|
| 40 |
-
# "ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
| 41 |
-
# "XRayVQATool", # For visual question answering on X-rays
|
| 42 |
-
# "LlavaMedTool", # For multimodal medical image understanding
|
| 43 |
-
# "XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 44 |
-
# "ChestXRayGeneratorTool", # For generating synthetic chest X-rays
|
| 45 |
-
"WebBrowserTool", # For web browsing and search capabilities
|
| 46 |
"MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
]
|
| 49 |
|
| 50 |
rag_config = RAGConfig(
|
|
@@ -55,7 +51,7 @@ class MedRAXProvider(LLMProvider):
|
|
| 55 |
pinecone_index_name="medrax2", # Name for the Pinecone index
|
| 56 |
chunk_size=1500,
|
| 57 |
chunk_overlap=300,
|
| 58 |
-
retriever_k=
|
| 59 |
local_docs_dir="rag_docs", # Change this to the path of the documents for RAG
|
| 60 |
huggingface_datasets=["VictorLJZ/medrax2"], # List of HuggingFace datasets to load
|
| 61 |
dataset_split="train", # Which split of the datasets to use
|
|
@@ -69,13 +65,13 @@ class MedRAXProvider(LLMProvider):
|
|
| 69 |
tools_to_use=selected_tools,
|
| 70 |
model_dir="/model-weights",
|
| 71 |
temp_dir="temp", # Change this to the path of the temporary directory
|
| 72 |
-
device="
|
| 73 |
model=self.model_name, # Change this to the model you want to use, e.g. gpt-4.1-2025-04-14, gemini-2.5-pro
|
| 74 |
-
temperature=0.
|
| 75 |
top_p=0.95,
|
| 76 |
model_kwargs=model_kwargs,
|
| 77 |
rag_config=rag_config,
|
| 78 |
-
|
| 79 |
)
|
| 80 |
|
| 81 |
self.agent = agent
|
|
@@ -101,8 +97,7 @@ class MedRAXProvider(LLMProvider):
|
|
| 101 |
if self.agent is None:
|
| 102 |
return LLMResponse(
|
| 103 |
content="Error: MedRAX agent not initialized",
|
| 104 |
-
duration=time.time() - start_time
|
| 105 |
-
raw_response=None
|
| 106 |
)
|
| 107 |
|
| 108 |
try:
|
|
@@ -110,78 +105,118 @@ class MedRAXProvider(LLMProvider):
|
|
| 110 |
messages = []
|
| 111 |
thread_id = str(int(time.time() * 1000)) # Unique thread ID
|
| 112 |
|
| 113 |
-
# Copy images to session temp directory and provide paths
|
| 114 |
-
image_paths = []
|
| 115 |
if request.images:
|
| 116 |
valid_images = self._validate_image_paths(request.images)
|
| 117 |
print(f"Processing {len(valid_images)} images")
|
| 118 |
for i, image_path in enumerate(valid_images):
|
| 119 |
-
print(f"Original image path: {image_path}")
|
| 120 |
-
# Copy image to session temp directory
|
| 121 |
-
dest_path = Path("temp") / f"image_{i}_{Path(image_path).name}"
|
| 122 |
-
print(f"Destination path: {dest_path}")
|
| 123 |
-
shutil.copy2(image_path, dest_path)
|
| 124 |
-
image_paths.append(str(dest_path))
|
| 125 |
-
|
| 126 |
-
# Verify file exists after copy
|
| 127 |
-
if not dest_path.exists():
|
| 128 |
-
print(f"ERROR: File not found after copy: {dest_path}")
|
| 129 |
-
else:
|
| 130 |
-
print(f"File successfully copied: {dest_path}")
|
| 131 |
-
|
| 132 |
# Add image path message for tools
|
| 133 |
-
messages.append({
|
| 134 |
-
"role": "user",
|
| 135 |
-
"content": f"image_path: {dest_path}"
|
| 136 |
-
})
|
| 137 |
|
| 138 |
# Add image content for multimodal LLM
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
"content": [{
|
| 145 |
"type": "image_url",
|
| 146 |
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"}
|
| 147 |
-
}]
|
| 148 |
-
|
|
|
|
|
|
|
| 149 |
|
| 150 |
# Add text message
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
"type": "text",
|
| 155 |
"text": request.text
|
| 156 |
-
}]
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
# Run the agent
|
| 160 |
-
response_content = ""
|
| 161 |
for chunk in self.agent.workflow.stream(
|
| 162 |
{"messages": messages},
|
| 163 |
{"configurable": {"thread_id": thread_id}},
|
| 164 |
stream_mode="updates"
|
| 165 |
):
|
| 166 |
-
if isinstance(chunk, dict):
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
duration = time.time() - start_time
|
| 174 |
|
| 175 |
return LLMResponse(
|
| 176 |
-
content=response_content
|
| 177 |
usage={"agent_tools": list(self.tools_dict.keys())},
|
| 178 |
duration=duration,
|
| 179 |
-
|
| 180 |
)
|
| 181 |
|
| 182 |
except Exception as e:
|
|
|
|
| 183 |
return LLMResponse(
|
| 184 |
content=f"Error: {str(e)}",
|
| 185 |
-
duration=time.time() - start_time
|
| 186 |
-
raw_response=None
|
| 187 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""MedRAX LLM provider implementation."""
|
| 2 |
|
| 3 |
import time
|
| 4 |
+
import re
|
|
|
|
| 5 |
|
| 6 |
from .base import LLMProvider, LLMRequest, LLMResponse
|
| 7 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
| 8 |
|
| 9 |
from medrax.rag.rag import RAGConfig
|
| 10 |
from main import initialize_agent
|
|
|
|
| 13 |
class MedRAXProvider(LLMProvider):
|
| 14 |
"""MedRAX LLM provider that uses the full MedRAX agent system."""
|
| 15 |
|
| 16 |
+
def __init__(self, model_name: str, system_prompt: str, **kwargs):
|
| 17 |
"""Initialize MedRAX provider.
|
| 18 |
|
| 19 |
Args:
|
| 20 |
model_name (str): Base LLM model name (e.g., "gpt-4.1-2025-04-14")
|
| 21 |
+
system_prompt (str): System prompt to use
|
| 22 |
**kwargs: Additional configuration parameters
|
| 23 |
"""
|
| 24 |
self.model_name = model_name
|
| 25 |
self.agent = None
|
| 26 |
self.tools_dict = None
|
| 27 |
+
|
| 28 |
+
super().__init__(model_name, system_prompt, **kwargs)
|
| 29 |
|
| 30 |
def _setup(self) -> None:
|
| 31 |
"""Set up MedRAX agent system."""
|
|
|
|
| 33 |
print("Starting server...")
|
| 34 |
|
| 35 |
selected_tools = [
|
| 36 |
+
"ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
"MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 38 |
+
"WebBrowserTool", # For web browsing and search capabilities
|
| 39 |
+
"TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
|
| 40 |
+
"ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
|
| 41 |
+
"DuckDuckGoSearchTool", # For privacy-focused web search using DuckDuckGo
|
| 42 |
+
"XRayVQATool", # For visual question answering on X-rays
|
| 43 |
+
"XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 44 |
]
|
| 45 |
|
| 46 |
rag_config = RAGConfig(
|
|
|
|
| 51 |
pinecone_index_name="medrax2", # Name for the Pinecone index
|
| 52 |
chunk_size=1500,
|
| 53 |
chunk_overlap=300,
|
| 54 |
+
retriever_k=3,
|
| 55 |
local_docs_dir="rag_docs", # Change this to the path of the documents for RAG
|
| 56 |
huggingface_datasets=["VictorLJZ/medrax2"], # List of HuggingFace datasets to load
|
| 57 |
dataset_split="train", # Which split of the datasets to use
|
|
|
|
| 65 |
tools_to_use=selected_tools,
|
| 66 |
model_dir="/model-weights",
|
| 67 |
temp_dir="temp", # Change this to the path of the temporary directory
|
| 68 |
+
device="cuda:0",
|
| 69 |
model=self.model_name, # Change this to the model you want to use, e.g. gpt-4.1-2025-04-14, gemini-2.5-pro
|
| 70 |
+
temperature=0.3,
|
| 71 |
top_p=0.95,
|
| 72 |
model_kwargs=model_kwargs,
|
| 73 |
rag_config=rag_config,
|
| 74 |
+
system_prompt=self.prompt_name,
|
| 75 |
)
|
| 76 |
|
| 77 |
self.agent = agent
|
|
|
|
| 97 |
if self.agent is None:
|
| 98 |
return LLMResponse(
|
| 99 |
content="Error: MedRAX agent not initialized",
|
| 100 |
+
duration=time.time() - start_time
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
try:
|
|
|
|
| 105 |
messages = []
|
| 106 |
thread_id = str(int(time.time() * 1000)) # Unique thread ID
|
| 107 |
|
|
|
|
|
|
|
| 108 |
if request.images:
|
| 109 |
valid_images = self._validate_image_paths(request.images)
|
| 110 |
print(f"Processing {len(valid_images)} images")
|
| 111 |
for i, image_path in enumerate(valid_images):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
# Add image path message for tools
|
| 113 |
+
messages.append(HumanMessage(content=f"image_path: {image_path}"))
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# Add image content for multimodal LLM
|
| 116 |
+
try:
|
| 117 |
+
with open(image_path, "rb") as img_file:
|
| 118 |
+
img_base64 = self._encode_image(image_path)
|
| 119 |
+
|
| 120 |
+
messages.append(HumanMessage(content=[{
|
|
|
|
| 121 |
"type": "image_url",
|
| 122 |
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"}
|
| 123 |
+
}]))
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"ERROR: Image encoding failed for {image_path}: {e}")
|
| 126 |
+
raise
|
| 127 |
|
| 128 |
# Add text message
|
| 129 |
+
if request.images:
|
| 130 |
+
# If there are images, add text as part of multimodal content
|
| 131 |
+
messages.append(HumanMessage(content=[{
|
| 132 |
"type": "text",
|
| 133 |
"text": request.text
|
| 134 |
+
}]))
|
| 135 |
+
else:
|
| 136 |
+
# If no images, add text as simple string
|
| 137 |
+
messages.append(HumanMessage(content=request.text))
|
| 138 |
+
|
| 139 |
+
# Run the agent with proper message type handling
|
| 140 |
+
final_response = ""
|
| 141 |
+
chunk_history = []
|
| 142 |
|
|
|
|
|
|
|
| 143 |
for chunk in self.agent.workflow.stream(
|
| 144 |
{"messages": messages},
|
| 145 |
{"configurable": {"thread_id": thread_id}},
|
| 146 |
stream_mode="updates"
|
| 147 |
):
|
| 148 |
+
if not isinstance(chunk, dict):
|
| 149 |
+
continue
|
| 150 |
+
|
| 151 |
+
for node_name, node_output in chunk.items():
|
| 152 |
+
# Log chunk and get serializable version
|
| 153 |
+
serializable_chunk = self._log_chunk(node_output, node_name)
|
| 154 |
+
chunk_history.append(serializable_chunk)
|
| 155 |
+
|
| 156 |
+
if "messages" not in node_output:
|
| 157 |
+
continue
|
| 158 |
+
|
| 159 |
+
for msg in node_output["messages"]:
|
| 160 |
+
if isinstance(msg, AIMessage) and msg.content:
|
| 161 |
+
# Handle case where content is a list
|
| 162 |
+
content = msg.content
|
| 163 |
+
if isinstance(content, list):
|
| 164 |
+
content = " ".join(content)
|
| 165 |
+
# Clean up the content (remove temp paths, etc.)
|
| 166 |
+
final_response = re.sub(r"temp/[^\s]*", "", content).strip()
|
| 167 |
+
|
| 168 |
+
# Determine the final response
|
| 169 |
+
if final_response:
|
| 170 |
+
response_content = final_response
|
| 171 |
+
else:
|
| 172 |
+
# Fallback if no LLM response was received
|
| 173 |
+
response_content = "No response generated"
|
| 174 |
|
| 175 |
duration = time.time() - start_time
|
| 176 |
|
| 177 |
return LLMResponse(
|
| 178 |
+
content=response_content,
|
| 179 |
usage={"agent_tools": list(self.tools_dict.keys())},
|
| 180 |
duration=duration,
|
| 181 |
+
chunk_history=chunk_history
|
| 182 |
)
|
| 183 |
|
| 184 |
except Exception as e:
|
| 185 |
+
print(f"ERROR: MedRAX agent failed: {e}")
|
| 186 |
return LLMResponse(
|
| 187 |
content=f"Error: {str(e)}",
|
| 188 |
+
duration=time.time() - start_time
|
|
|
|
| 189 |
)
|
| 190 |
+
|
| 191 |
+
def _log_chunk(self, chunk: dict, node_name: str) -> dict:
|
| 192 |
+
"""Log and process a chunk from the agent workflow.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
chunk (dict): The chunk data from the agent workflow
|
| 196 |
+
node_name (str): Name of the node that produced the chunk
|
| 197 |
+
|
| 198 |
+
Returns:
|
| 199 |
+
dict: Serializable version of the chunk for debugging
|
| 200 |
+
"""
|
| 201 |
+
# Log every chunk for debugging
|
| 202 |
+
print(f"Chunk from node '{node_name}': {type(chunk)}")
|
| 203 |
+
|
| 204 |
+
# Store serializable version of chunk for debugging
|
| 205 |
+
serializable_chunk = {
|
| 206 |
+
"node_name": node_name,
|
| 207 |
+
"node_type": type(chunk).__name__,
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
# Log messages in this chunk
|
| 211 |
+
if "messages" in chunk and isinstance(chunk, dict):
|
| 212 |
+
chunk_messages = []
|
| 213 |
+
for msg in chunk["messages"]:
|
| 214 |
+
msg_info = {
|
| 215 |
+
"type": type(msg).__name__,
|
| 216 |
+
"content": str(msg.content) if hasattr(msg, 'content') else str(msg)
|
| 217 |
+
}
|
| 218 |
+
chunk_messages.append(msg_info)
|
| 219 |
+
print(f"Message in chunk: {msg_info}")
|
| 220 |
+
serializable_chunk["messages"] = chunk_messages
|
| 221 |
+
|
| 222 |
+
return serializable_chunk
|
benchmarking/llm_providers/openai_provider.py
CHANGED
|
@@ -101,13 +101,11 @@ class OpenAIProvider(LLMProvider):
|
|
| 101 |
return LLMResponse(
|
| 102 |
content=content,
|
| 103 |
usage=usage,
|
| 104 |
-
duration=duration
|
| 105 |
-
raw_response=response
|
| 106 |
)
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
return LLMResponse(
|
| 110 |
content=f"Error: {str(e)}",
|
| 111 |
-
duration=time.time() - start_time
|
| 112 |
-
raw_response=None
|
| 113 |
)
|
|
|
|
| 101 |
return LLMResponse(
|
| 102 |
content=content,
|
| 103 |
usage=usage,
|
| 104 |
+
duration=duration
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
except Exception as e:
|
| 108 |
return LLMResponse(
|
| 109 |
content=f"Error: {str(e)}",
|
| 110 |
+
duration=time.time() - start_time
|
|
|
|
| 111 |
)
|
benchmarking/llm_providers/openrouter_provider.py
CHANGED
|
@@ -78,12 +78,10 @@ class OpenRouterProvider(LLMProvider):
|
|
| 78 |
return LLMResponse(
|
| 79 |
content=content,
|
| 80 |
usage=usage,
|
| 81 |
-
duration=duration
|
| 82 |
-
raw_response=response
|
| 83 |
)
|
| 84 |
except Exception as e:
|
| 85 |
return LLMResponse(
|
| 86 |
content=f"Error: {str(e)}",
|
| 87 |
-
duration=time.time() - start_time
|
| 88 |
-
raw_response=None
|
| 89 |
)
|
|
|
|
| 78 |
return LLMResponse(
|
| 79 |
content=content,
|
| 80 |
usage=usage,
|
| 81 |
+
duration=duration
|
|
|
|
| 82 |
)
|
| 83 |
except Exception as e:
|
| 84 |
return LLMResponse(
|
| 85 |
content=f"Error: {str(e)}",
|
| 86 |
+
duration=time.time() - start_time
|
|
|
|
| 87 |
)
|
benchmarking/runner.py
CHANGED
|
@@ -24,6 +24,7 @@ class BenchmarkResult:
|
|
| 24 |
duration: float
|
| 25 |
usage: Optional[Dict[str, Any]] = None
|
| 26 |
error: Optional[str] = None
|
|
|
|
| 27 |
metadata: Optional[Dict[str, Any]] = None
|
| 28 |
|
| 29 |
|
|
@@ -138,9 +139,11 @@ class BenchmarkRunner:
|
|
| 138 |
# Add to results
|
| 139 |
self.results.append(result)
|
| 140 |
|
|
|
|
|
|
|
|
|
|
| 141 |
# Log progress
|
| 142 |
if processed % 10 == 0:
|
| 143 |
-
self._save_intermediate_results()
|
| 144 |
accuracy = (correct / processed) * 100
|
| 145 |
avg_duration = total_duration / processed
|
| 146 |
|
|
@@ -163,6 +166,9 @@ class BenchmarkRunner:
|
|
| 163 |
error=str(e)
|
| 164 |
)
|
| 165 |
self.results.append(error_result)
|
|
|
|
|
|
|
|
|
|
| 166 |
continue
|
| 167 |
|
| 168 |
# Save final results
|
|
@@ -220,6 +226,7 @@ class BenchmarkRunner:
|
|
| 220 |
is_correct=is_correct,
|
| 221 |
duration=duration,
|
| 222 |
usage=response.usage,
|
|
|
|
| 223 |
metadata={
|
| 224 |
"data_point_metadata": data_point.metadata,
|
| 225 |
"case_id": data_point.case_id,
|
|
@@ -238,6 +245,7 @@ class BenchmarkRunner:
|
|
| 238 |
is_correct=False,
|
| 239 |
duration=duration,
|
| 240 |
error=str(e),
|
|
|
|
| 241 |
metadata={
|
| 242 |
"data_point_metadata": data_point.metadata,
|
| 243 |
"case_id": data_point.case_id,
|
|
@@ -254,9 +262,9 @@ class BenchmarkRunner:
|
|
| 254 |
Returns:
|
| 255 |
str: The extracted answer
|
| 256 |
"""
|
| 257 |
-
#
|
| 258 |
-
|
| 259 |
-
match = re.search(
|
| 260 |
if match:
|
| 261 |
return match.group(1).upper()
|
| 262 |
|
|
@@ -286,11 +294,55 @@ class BenchmarkRunner:
|
|
| 286 |
|
| 287 |
return model_letter == correct_letter
|
| 288 |
|
| 289 |
-
def
|
| 290 |
-
"""Save
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
-
# Convert results to serializable format
|
| 294 |
results_data = []
|
| 295 |
for result in self.results:
|
| 296 |
results_data.append({
|
|
@@ -307,19 +359,6 @@ class BenchmarkRunner:
|
|
| 307 |
|
| 308 |
with open(results_file, 'w') as f:
|
| 309 |
json.dump(results_data, f, indent=2)
|
| 310 |
-
|
| 311 |
-
def _save_final_results(self, benchmark: Benchmark) -> Dict[str, Any]:
|
| 312 |
-
"""Save final results and return summary.
|
| 313 |
-
|
| 314 |
-
Args:
|
| 315 |
-
benchmark (Benchmark): The benchmark that was run
|
| 316 |
-
|
| 317 |
-
Returns:
|
| 318 |
-
Dict[str, Any]: Summary of results
|
| 319 |
-
"""
|
| 320 |
-
# Save detailed results
|
| 321 |
-
results_file = self.output_dir / f"{self.run_id}_results.json"
|
| 322 |
-
self._save_intermediate_results()
|
| 323 |
|
| 324 |
# Calculate summary statistics
|
| 325 |
total_questions = len(self.results)
|
|
|
|
| 24 |
duration: float
|
| 25 |
usage: Optional[Dict[str, Any]] = None
|
| 26 |
error: Optional[str] = None
|
| 27 |
+
chunk_history: Optional[Dict[str, Any]] = None
|
| 28 |
metadata: Optional[Dict[str, Any]] = None
|
| 29 |
|
| 30 |
|
|
|
|
| 139 |
# Add to results
|
| 140 |
self.results.append(result)
|
| 141 |
|
| 142 |
+
# Save individual result immediately
|
| 143 |
+
self._save_individual_result(result)
|
| 144 |
+
|
| 145 |
# Log progress
|
| 146 |
if processed % 10 == 0:
|
|
|
|
| 147 |
accuracy = (correct / processed) * 100
|
| 148 |
avg_duration = total_duration / processed
|
| 149 |
|
|
|
|
| 166 |
error=str(e)
|
| 167 |
)
|
| 168 |
self.results.append(error_result)
|
| 169 |
+
|
| 170 |
+
# Save individual error result immediately
|
| 171 |
+
self._save_individual_result(error_result)
|
| 172 |
continue
|
| 173 |
|
| 174 |
# Save final results
|
|
|
|
| 226 |
is_correct=is_correct,
|
| 227 |
duration=duration,
|
| 228 |
usage=response.usage,
|
| 229 |
+
chunk_history=response.chunk_history,
|
| 230 |
metadata={
|
| 231 |
"data_point_metadata": data_point.metadata,
|
| 232 |
"case_id": data_point.case_id,
|
|
|
|
| 245 |
is_correct=False,
|
| 246 |
duration=duration,
|
| 247 |
error=str(e),
|
| 248 |
+
chunk_history=None,
|
| 249 |
metadata={
|
| 250 |
"data_point_metadata": data_point.metadata,
|
| 251 |
"case_id": data_point.case_id,
|
|
|
|
| 262 |
Returns:
|
| 263 |
str: The extracted answer
|
| 264 |
"""
|
| 265 |
+
# Look for the '\boxed{A}' format
|
| 266 |
+
boxed_pattern = r'\\boxed\{([A-Fa-f])\}'
|
| 267 |
+
match = re.search(boxed_pattern, response_text)
|
| 268 |
if match:
|
| 269 |
return match.group(1).upper()
|
| 270 |
|
|
|
|
| 294 |
|
| 295 |
return model_letter == correct_letter
|
| 296 |
|
| 297 |
+
def _save_individual_result(self, result: BenchmarkResult) -> None:
|
| 298 |
+
"""Save a single result to its own JSON file.
|
| 299 |
+
|
| 300 |
+
Args:
|
| 301 |
+
result (BenchmarkResult): The result to save
|
| 302 |
+
"""
|
| 303 |
+
# Sanitize data_point_id for filename (remove invalid characters)
|
| 304 |
+
safe_id = re.sub(r'[^\w\-_.]', '_', result.data_point_id)
|
| 305 |
+
|
| 306 |
+
# Create filename with benchmark name and data point ID
|
| 307 |
+
filename = f"{self.config.benchmark_name}_{safe_id}.json"
|
| 308 |
+
result_file = self.output_dir / "individual_results" / filename
|
| 309 |
+
|
| 310 |
+
# Create individual_results directory if it doesn't exist
|
| 311 |
+
result_file.parent.mkdir(exist_ok=True)
|
| 312 |
+
|
| 313 |
+
# Convert result to serializable format
|
| 314 |
+
result_data = {
|
| 315 |
+
"timestamp": datetime.now().isoformat(),
|
| 316 |
+
"run_id": self.run_id,
|
| 317 |
+
"data_point_id": result.data_point_id,
|
| 318 |
+
"question": result.question,
|
| 319 |
+
"model_answer": result.model_answer,
|
| 320 |
+
"correct_answer": result.correct_answer,
|
| 321 |
+
"is_correct": result.is_correct,
|
| 322 |
+
"duration": result.duration,
|
| 323 |
+
"usage": result.usage,
|
| 324 |
+
"error": result.error,
|
| 325 |
+
"chunk_history": result.chunk_history,
|
| 326 |
+
"metadata": result.metadata
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
# Save to file
|
| 330 |
+
with open(result_file, 'w') as f:
|
| 331 |
+
json.dump(result_data, f, indent=2)
|
| 332 |
+
|
| 333 |
+
def _save_final_results(self, benchmark: Benchmark) -> Dict[str, Any]:
|
| 334 |
+
"""Save final results and return summary.
|
| 335 |
+
|
| 336 |
+
Args:
|
| 337 |
+
benchmark (Benchmark): The benchmark that was run
|
| 338 |
+
|
| 339 |
+
Returns:
|
| 340 |
+
Dict[str, Any]: Summary of results
|
| 341 |
+
"""
|
| 342 |
+
# Save detailed results
|
| 343 |
+
results_file = self.output_dir / f"{self.run_id}_results.json"
|
| 344 |
|
| 345 |
+
# Convert results to serializable format for final file
|
| 346 |
results_data = []
|
| 347 |
for result in self.results:
|
| 348 |
results_data.append({
|
|
|
|
| 359 |
|
| 360 |
with open(results_file, 'w') as f:
|
| 361 |
json.dump(results_data, f, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
|
| 363 |
# Calculate summary statistics
|
| 364 |
total_questions = len(self.results)
|
interface.py
CHANGED
|
@@ -192,7 +192,11 @@ class ChatInterface:
|
|
| 192 |
tool_args = pending_call["args"]
|
| 193 |
|
| 194 |
try:
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
tool_output_str = json.dumps(tool_output_json, indent=2)
|
| 197 |
except (json.JSONDecodeError, TypeError):
|
| 198 |
tool_output_str = str(msg.content)
|
|
@@ -217,10 +221,11 @@ class ChatInterface:
|
|
| 217 |
|
| 218 |
if tool_name == "image_visualizer":
|
| 219 |
try:
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
| 224 |
if isinstance(result, dict) and "image_path" in result:
|
| 225 |
self.display_file_path = result["image_path"]
|
| 226 |
chat_history.append(
|
|
|
|
| 192 |
tool_args = pending_call["args"]
|
| 193 |
|
| 194 |
try:
|
| 195 |
+
# Handle case where tool returns tuple (output, metadata)
|
| 196 |
+
content = msg.content
|
| 197 |
+
content_tuple = ast.literal_eval(content)
|
| 198 |
+
content = json.dumps(content_tuple[0])
|
| 199 |
+
tool_output_json = json.loads(content)
|
| 200 |
tool_output_str = json.dumps(tool_output_json, indent=2)
|
| 201 |
except (json.JSONDecodeError, TypeError):
|
| 202 |
tool_output_str = str(msg.content)
|
|
|
|
| 221 |
|
| 222 |
if tool_name == "image_visualizer":
|
| 223 |
try:
|
| 224 |
+
# Handle case where tool returns tuple (output, metadata)
|
| 225 |
+
content = msg.content
|
| 226 |
+
content_tuple = ast.literal_eval(content)
|
| 227 |
+
result = content_tuple[0]
|
| 228 |
+
|
| 229 |
if isinstance(result, dict) and "image_path" in result:
|
| 230 |
self.display_file_path = result["image_path"]
|
| 231 |
chat_history.append(
|
main.py
CHANGED
|
@@ -41,7 +41,7 @@ def initialize_agent(
|
|
| 41 |
top_p: float = 0.95,
|
| 42 |
rag_config: Optional[RAGConfig] = None,
|
| 43 |
model_kwargs: Dict[str, Any] = {},
|
| 44 |
-
|
| 45 |
):
|
| 46 |
"""Initialize the MedRAX agent with specified tools and configuration.
|
| 47 |
|
|
@@ -56,6 +56,7 @@ def initialize_agent(
|
|
| 56 |
top_p (float, optional): Top P for the model. Defaults to 0.95.
|
| 57 |
rag_config (RAGConfig, optional): Configuration for the RAG tool. Defaults to None.
|
| 58 |
model_kwargs (dict, optional): Additional keyword arguments for model.
|
|
|
|
| 59 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
| 60 |
|
| 61 |
Returns:
|
|
@@ -63,7 +64,7 @@ def initialize_agent(
|
|
| 63 |
"""
|
| 64 |
# Load system prompts from file
|
| 65 |
prompts = load_prompts_from_file(prompt_file)
|
| 66 |
-
prompt = prompts[
|
| 67 |
|
| 68 |
# Define the URL of the MedGemma FastAPI service.
|
| 69 |
MEDGEMMA_API_URL = os.getenv("MEDGEMMA_API_URL", "http://127.0.0.1:8002")
|
|
@@ -126,7 +127,6 @@ def initialize_agent(
|
|
| 126 |
log_dir="logs",
|
| 127 |
system_prompt=prompt,
|
| 128 |
checkpointer=checkpointer,
|
| 129 |
-
debug=debug,
|
| 130 |
)
|
| 131 |
print("Agent initialized")
|
| 132 |
|
|
@@ -145,19 +145,20 @@ if __name__ == "__main__":
|
|
| 145 |
selected_tools = [
|
| 146 |
"ImageVisualizerTool", # For displaying images in the UI
|
| 147 |
# "DicomProcessorTool", # For processing DICOM medical image files
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
# "LlavaMedTool", # For multimodal medical image understanding
|
| 154 |
-
|
| 155 |
# "ChestXRayGeneratorTool", # For generating synthetic chest X-rays
|
| 156 |
# "MedSAM2Tool", # For advanced medical image segmentation using MedSAM2
|
| 157 |
# "WebBrowserTool", # For web browsing and search capabilities
|
| 158 |
# "MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 159 |
# "PythonSandboxTool", # Add the Python sandbox tool
|
| 160 |
"MedGemmaVQATool" # Google MedGemma VQA tool
|
|
|
|
| 161 |
]
|
| 162 |
|
| 163 |
# Setup the MedGemma environment if the MedGemmaVQATool is selected
|
|
@@ -174,7 +175,7 @@ if __name__ == "__main__":
|
|
| 174 |
pinecone_index_name="medrax2", # Name for the Pinecone index
|
| 175 |
chunk_size=1500,
|
| 176 |
chunk_overlap=300,
|
| 177 |
-
retriever_k=
|
| 178 |
local_docs_dir="rag_docs", # Change this to the path of the documents for RAG
|
| 179 |
huggingface_datasets=["VictorLJZ/medrax2"], # List of HuggingFace datasets to load
|
| 180 |
dataset_split="train", # Which split of the datasets to use
|
|
@@ -186,15 +187,15 @@ if __name__ == "__main__":
|
|
| 186 |
agent, tools_dict = initialize_agent(
|
| 187 |
prompt_file="medrax/docs/system_prompts.txt",
|
| 188 |
tools_to_use=selected_tools,
|
| 189 |
-
model_dir="model-weights",
|
| 190 |
temp_dir="temp", # Change this to the path of the temporary directory
|
| 191 |
-
device="cuda",
|
| 192 |
model="gpt-4.1-2025-04-14", # Change this to the model you want to use, e.g. gpt-4.1-2025-04-14, gemini-2.5-pro
|
| 193 |
temperature=0.7,
|
| 194 |
top_p=0.95,
|
| 195 |
model_kwargs=model_kwargs,
|
| 196 |
rag_config=rag_config,
|
| 197 |
-
|
| 198 |
)
|
| 199 |
|
| 200 |
# Create and launch the web interface
|
|
|
|
| 41 |
top_p: float = 0.95,
|
| 42 |
rag_config: Optional[RAGConfig] = None,
|
| 43 |
model_kwargs: Dict[str, Any] = {},
|
| 44 |
+
system_prompt: str = "MEDICAL_ASSISTANT",
|
| 45 |
):
|
| 46 |
"""Initialize the MedRAX agent with specified tools and configuration.
|
| 47 |
|
|
|
|
| 56 |
top_p (float, optional): Top P for the model. Defaults to 0.95.
|
| 57 |
rag_config (RAGConfig, optional): Configuration for the RAG tool. Defaults to None.
|
| 58 |
model_kwargs (dict, optional): Additional keyword arguments for model.
|
| 59 |
+
system_prompt (str, optional): System prompt to use. Defaults to "MEDICAL_ASSISTANT".
|
| 60 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
| 61 |
|
| 62 |
Returns:
|
|
|
|
| 64 |
"""
|
| 65 |
# Load system prompts from file
|
| 66 |
prompts = load_prompts_from_file(prompt_file)
|
| 67 |
+
prompt = prompts[system_prompt]
|
| 68 |
|
| 69 |
# Define the URL of the MedGemma FastAPI service.
|
| 70 |
MEDGEMMA_API_URL = os.getenv("MEDGEMMA_API_URL", "http://127.0.0.1:8002")
|
|
|
|
| 127 |
log_dir="logs",
|
| 128 |
system_prompt=prompt,
|
| 129 |
checkpointer=checkpointer,
|
|
|
|
| 130 |
)
|
| 131 |
print("Agent initialized")
|
| 132 |
|
|
|
|
| 145 |
selected_tools = [
|
| 146 |
"ImageVisualizerTool", # For displaying images in the UI
|
| 147 |
# "DicomProcessorTool", # For processing DICOM medical image files
|
| 148 |
+
"TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
|
| 149 |
+
"ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
|
| 150 |
+
"ChestXRaySegmentationTool", # For segmenting anatomical regions in chest X-rays
|
| 151 |
+
"ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
| 152 |
+
"XRayVQATool", # For visual question answering on X-rays
|
| 153 |
# "LlavaMedTool", # For multimodal medical image understanding
|
| 154 |
+
"XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 155 |
# "ChestXRayGeneratorTool", # For generating synthetic chest X-rays
|
| 156 |
# "MedSAM2Tool", # For advanced medical image segmentation using MedSAM2
|
| 157 |
# "WebBrowserTool", # For web browsing and search capabilities
|
| 158 |
# "MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 159 |
# "PythonSandboxTool", # Add the Python sandbox tool
|
| 160 |
"MedGemmaVQATool" # Google MedGemma VQA tool
|
| 161 |
+
"DuckDuckGoSearchTool", # For privacy-focused web search using DuckDuckGo
|
| 162 |
]
|
| 163 |
|
| 164 |
# Setup the MedGemma environment if the MedGemmaVQATool is selected
|
|
|
|
| 175 |
pinecone_index_name="medrax2", # Name for the Pinecone index
|
| 176 |
chunk_size=1500,
|
| 177 |
chunk_overlap=300,
|
| 178 |
+
retriever_k=3,
|
| 179 |
local_docs_dir="rag_docs", # Change this to the path of the documents for RAG
|
| 180 |
huggingface_datasets=["VictorLJZ/medrax2"], # List of HuggingFace datasets to load
|
| 181 |
dataset_split="train", # Which split of the datasets to use
|
|
|
|
| 187 |
agent, tools_dict = initialize_agent(
|
| 188 |
prompt_file="medrax/docs/system_prompts.txt",
|
| 189 |
tools_to_use=selected_tools,
|
| 190 |
+
model_dir="/model-weights",
|
| 191 |
temp_dir="temp", # Change this to the path of the temporary directory
|
| 192 |
+
device="cuda:0",
|
| 193 |
model="gpt-4.1-2025-04-14", # Change this to the model you want to use, e.g. gpt-4.1-2025-04-14, gemini-2.5-pro
|
| 194 |
temperature=0.7,
|
| 195 |
top_p=0.95,
|
| 196 |
model_kwargs=model_kwargs,
|
| 197 |
rag_config=rag_config,
|
| 198 |
+
system_prompt="MEDICAL_ASSISTANT",
|
| 199 |
)
|
| 200 |
|
| 201 |
# Create and launch the web interface
|
medrax/agent/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
from .agent import
|
|
|
|
| 1 |
+
from .agent import AgentState, Agent
|
medrax/agent/agent.py
CHANGED
|
@@ -5,9 +5,8 @@ from dotenv import load_dotenv
|
|
| 5 |
from datetime import datetime
|
| 6 |
from typing import List, Dict, Any, TypedDict, Annotated, Optional
|
| 7 |
|
| 8 |
-
from langgraph.
|
| 9 |
-
from langchain_core.messages import AnyMessage
|
| 10 |
-
from langgraph.prebuilt.chat_agent_executor import AgentState
|
| 11 |
from langchain_core.language_models import BaseLanguageModel
|
| 12 |
from langchain_core.tools import BaseTool
|
| 13 |
|
|
@@ -33,19 +32,17 @@ class ToolCallLog(TypedDict):
|
|
| 33 |
content: str
|
| 34 |
|
| 35 |
|
| 36 |
-
class
|
| 37 |
"""
|
| 38 |
-
A
|
| 39 |
|
| 40 |
Attributes:
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
"""
|
| 45 |
|
| 46 |
-
|
| 47 |
-
session_bytes: bytes = b""
|
| 48 |
-
session_metadata: dict = {}
|
| 49 |
|
| 50 |
|
| 51 |
class Agent:
|
|
@@ -55,7 +52,7 @@ class Agent:
|
|
| 55 |
|
| 56 |
Attributes:
|
| 57 |
model (BaseLanguageModel): The language model used for processing.
|
| 58 |
-
tools (
|
| 59 |
checkpointer (Any): Manages and persists the agent's state.
|
| 60 |
system_prompt (str): The system instructions for the agent.
|
| 61 |
workflow (StateGraph): The compiled workflow for the agent's processing.
|
|
@@ -71,7 +68,6 @@ class Agent:
|
|
| 71 |
system_prompt: str = "",
|
| 72 |
log_tools: bool = True,
|
| 73 |
log_dir: Optional[str] = "logs",
|
| 74 |
-
debug: bool = False,
|
| 75 |
):
|
| 76 |
"""
|
| 77 |
Initialize the Agent.
|
|
@@ -83,7 +79,6 @@ class Agent:
|
|
| 83 |
system_prompt (str, optional): System instructions. Defaults to "".
|
| 84 |
log_tools (bool, optional): Whether to log tool calls. Defaults to True.
|
| 85 |
log_dir (str, optional): Directory to save logs. Defaults to 'logs'.
|
| 86 |
-
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
| 87 |
"""
|
| 88 |
self.system_prompt = system_prompt
|
| 89 |
self.log_tools = log_tools
|
|
@@ -92,12 +87,107 @@ class Agent:
|
|
| 92 |
self.log_path = Path(log_dir or "logs")
|
| 93 |
self.log_path.mkdir(exist_ok=True)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
debug=debug,
|
| 102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
self.tools = {t.name: t for t in tools}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from datetime import datetime
|
| 6 |
from typing import List, Dict, Any, TypedDict, Annotated, Optional
|
| 7 |
|
| 8 |
+
from langgraph.graph import StateGraph, END
|
| 9 |
+
from langchain_core.messages import AnyMessage, SystemMessage, ToolMessage
|
|
|
|
| 10 |
from langchain_core.language_models import BaseLanguageModel
|
| 11 |
from langchain_core.tools import BaseTool
|
| 12 |
|
|
|
|
| 32 |
content: str
|
| 33 |
|
| 34 |
|
| 35 |
+
class AgentState(TypedDict):
|
| 36 |
"""
|
| 37 |
+
A TypedDict representing the state of an agent.
|
| 38 |
|
| 39 |
Attributes:
|
| 40 |
+
messages (Annotated[List[AnyMessage], operator.add]): A list of messages
|
| 41 |
+
representing the conversation history. The operator.add annotation
|
| 42 |
+
indicates that new messages should be appended to this list.
|
| 43 |
"""
|
| 44 |
|
| 45 |
+
messages: Annotated[List[AnyMessage], operator.add]
|
|
|
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
class Agent:
|
|
|
|
| 52 |
|
| 53 |
Attributes:
|
| 54 |
model (BaseLanguageModel): The language model used for processing.
|
| 55 |
+
tools (Dict[str, BaseTool]): A dictionary of available tools.
|
| 56 |
checkpointer (Any): Manages and persists the agent's state.
|
| 57 |
system_prompt (str): The system instructions for the agent.
|
| 58 |
workflow (StateGraph): The compiled workflow for the agent's processing.
|
|
|
|
| 68 |
system_prompt: str = "",
|
| 69 |
log_tools: bool = True,
|
| 70 |
log_dir: Optional[str] = "logs",
|
|
|
|
| 71 |
):
|
| 72 |
"""
|
| 73 |
Initialize the Agent.
|
|
|
|
| 79 |
system_prompt (str, optional): System instructions. Defaults to "".
|
| 80 |
log_tools (bool, optional): Whether to log tool calls. Defaults to True.
|
| 81 |
log_dir (str, optional): Directory to save logs. Defaults to 'logs'.
|
|
|
|
| 82 |
"""
|
| 83 |
self.system_prompt = system_prompt
|
| 84 |
self.log_tools = log_tools
|
|
|
|
| 87 |
self.log_path = Path(log_dir or "logs")
|
| 88 |
self.log_path.mkdir(exist_ok=True)
|
| 89 |
|
| 90 |
+
# Define the agent workflow
|
| 91 |
+
workflow = StateGraph(AgentState)
|
| 92 |
+
workflow.add_node("process", self.process_request)
|
| 93 |
+
workflow.add_node("execute", self.execute_tools)
|
| 94 |
+
workflow.add_conditional_edges(
|
| 95 |
+
"process", self.has_tool_calls, {True: "execute", False: END}
|
|
|
|
| 96 |
)
|
| 97 |
+
workflow.add_edge("execute", "process")
|
| 98 |
+
workflow.set_entry_point("process")
|
| 99 |
+
|
| 100 |
+
self.workflow = workflow.compile(checkpointer=checkpointer)
|
| 101 |
self.tools = {t.name: t for t in tools}
|
| 102 |
+
self.model = model.bind_tools(tools)
|
| 103 |
+
|
| 104 |
+
def process_request(self, state: AgentState) -> Dict[str, List[AnyMessage]]:
|
| 105 |
+
"""
|
| 106 |
+
Process the request using the language model.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
state (AgentState): The current state of the agent.
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
Dict[str, List[AnyMessage]]: A dictionary containing the model's response.
|
| 113 |
+
"""
|
| 114 |
+
messages = state["messages"]
|
| 115 |
+
if self.system_prompt:
|
| 116 |
+
messages = [SystemMessage(content=self.system_prompt)] + messages
|
| 117 |
+
response = self.model.invoke(messages)
|
| 118 |
+
return {"messages": [response]}
|
| 119 |
+
|
| 120 |
+
def has_tool_calls(self, state: AgentState) -> bool:
|
| 121 |
+
"""
|
| 122 |
+
Check if the response contains any tool calls.
|
| 123 |
+
|
| 124 |
+
Args:
|
| 125 |
+
state (AgentState): The current state of the agent.
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
bool: True if tool calls exist, False otherwise.
|
| 129 |
+
"""
|
| 130 |
+
response = state["messages"][-1]
|
| 131 |
+
return len(response.tool_calls) > 0
|
| 132 |
+
|
| 133 |
+
def execute_tools(self, state: AgentState) -> Dict[str, List[ToolMessage]]:
|
| 134 |
+
"""
|
| 135 |
+
Execute tool calls from the model's response.
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
state (AgentState): The current state of the agent.
|
| 139 |
+
|
| 140 |
+
Returns:
|
| 141 |
+
Dict[str, List[ToolMessage]]: A dictionary containing tool execution results.
|
| 142 |
+
"""
|
| 143 |
+
tool_calls = state["messages"][-1].tool_calls
|
| 144 |
+
results = []
|
| 145 |
+
|
| 146 |
+
for call in tool_calls:
|
| 147 |
+
print(f"Executing tool: {call}")
|
| 148 |
+
if call["name"] not in self.tools:
|
| 149 |
+
print("\n....invalid tool....")
|
| 150 |
+
result = "invalid tool, please retry"
|
| 151 |
+
else:
|
| 152 |
+
result = self.tools[call["name"]].invoke(call["args"])
|
| 153 |
+
|
| 154 |
+
results.append(
|
| 155 |
+
ToolMessage(
|
| 156 |
+
tool_call_id=call["id"],
|
| 157 |
+
name=call["name"],
|
| 158 |
+
args=call["args"],
|
| 159 |
+
content=str(result),
|
| 160 |
+
)
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
self._save_tool_calls(results)
|
| 164 |
+
print("Returning to model processing!")
|
| 165 |
+
|
| 166 |
+
return {"messages": results}
|
| 167 |
+
|
| 168 |
+
def _save_tool_calls(self, tool_calls: List[ToolMessage]) -> None:
|
| 169 |
+
"""
|
| 170 |
+
Save tool calls to a JSON file with timestamp-based naming.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
tool_calls (List[ToolMessage]): List of tool calls to save.
|
| 174 |
+
"""
|
| 175 |
+
if not self.log_tools:
|
| 176 |
+
return
|
| 177 |
+
|
| 178 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 179 |
+
filename = self.log_path / f"tool_calls_{timestamp}.json"
|
| 180 |
+
|
| 181 |
+
logs: List[ToolCallLog] = []
|
| 182 |
+
for call in tool_calls:
|
| 183 |
+
log_entry = {
|
| 184 |
+
"tool_call_id": call.tool_call_id,
|
| 185 |
+
"name": call.name,
|
| 186 |
+
"args": call.args,
|
| 187 |
+
"content": call.content,
|
| 188 |
+
"timestamp": datetime.now().isoformat(),
|
| 189 |
+
}
|
| 190 |
+
logs.append(log_entry)
|
| 191 |
+
|
| 192 |
+
with open(filename, "w") as f:
|
| 193 |
+
json.dump(logs, f, indent=4)
|
medrax/docs/system_prompts.txt
CHANGED
|
@@ -22,5 +22,5 @@ Solve using your own vision and reasoning and use tools (if available) to comple
|
|
| 22 |
You can make multiple tool calls in parallel or in sequence as needed for comprehensive answers.
|
| 23 |
Think critically about and criticize the tool outputs.
|
| 24 |
If you need to look up some information before asking a follow up question, you are allowed to do that.
|
| 25 |
-
When encountering a multiple-choice question, your final response should end with "Final answer:
|
| 26 |
It is extremely important that you strictly answer in the format mentioned above.
|
|
|
|
| 22 |
You can make multiple tool calls in parallel or in sequence as needed for comprehensive answers.
|
| 23 |
Think critically about and criticize the tool outputs.
|
| 24 |
If you need to look up some information before asking a follow up question, you are allowed to do that.
|
| 25 |
+
When encountering a multiple-choice question, your final response should end with "Final answer: \boxed{A}" from list of possible choices A, B, C, D, E, F.
|
| 26 |
It is extremely important that you strictly answer in the format mentioned above.
|
medrax/tools/__init__.py
CHANGED
|
@@ -5,10 +5,10 @@ from .report_generation import *
|
|
| 5 |
from .segmentation import *
|
| 6 |
from .vqa import *
|
| 7 |
from .grounding import *
|
| 8 |
-
from .
|
| 9 |
from .dicom import *
|
| 10 |
from .utils import *
|
| 11 |
from .rag import *
|
| 12 |
-
from .
|
| 13 |
from .python_tool import *
|
| 14 |
from .medsam2 import *
|
|
|
|
| 5 |
from .segmentation import *
|
| 6 |
from .vqa import *
|
| 7 |
from .grounding import *
|
| 8 |
+
from .xray_generation import *
|
| 9 |
from .dicom import *
|
| 10 |
from .utils import *
|
| 11 |
from .rag import *
|
| 12 |
+
from .browsing import *
|
| 13 |
from .python_tool import *
|
| 14 |
from .medsam2 import *
|
medrax/tools/browsing/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Web browsing tools for MedRAX2 medical agents."""
|
| 2 |
+
|
| 3 |
+
from .duckduckgo import DuckDuckGoSearchTool, WebSearchInput
|
| 4 |
+
from .web_browser import WebBrowserTool, WebBrowserSchema, SearchQuerySchema, VisitUrlSchema
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"DuckDuckGoSearchTool",
|
| 8 |
+
"WebSearchInput",
|
| 9 |
+
"WebBrowserTool",
|
| 10 |
+
"WebBrowserSchema",
|
| 11 |
+
"SearchQuerySchema",
|
| 12 |
+
"VisitUrlSchema"
|
| 13 |
+
]
|
medrax/tools/browsing/duckduckgo.py
ADDED
|
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Web search tool for MedRAX2 medical agents.
|
| 3 |
+
|
| 4 |
+
Provides DuckDuckGo search capabilities for medical agents to retrieve
|
| 5 |
+
real-time information from the web with proper error handling
|
| 6 |
+
and result formatting. Designed specifically for medical research,
|
| 7 |
+
fact-checking, and accessing current medical information.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import asyncio
|
| 11 |
+
import logging
|
| 12 |
+
import time
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
from typing import Dict, Any, Tuple
|
| 15 |
+
|
| 16 |
+
from langchain_core.callbacks import (
|
| 17 |
+
AsyncCallbackManagerForToolRun,
|
| 18 |
+
CallbackManagerForToolRun,
|
| 19 |
+
)
|
| 20 |
+
from langchain_core.tools import BaseTool
|
| 21 |
+
from pydantic import BaseModel, Field
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
from duckduckgo_search import DDGS
|
| 25 |
+
except ImportError:
|
| 26 |
+
DDGS = None
|
| 27 |
+
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class WebSearchInput(BaseModel):
|
| 32 |
+
"""Input schema for web search tool."""
|
| 33 |
+
|
| 34 |
+
query: str = Field(
|
| 35 |
+
...,
|
| 36 |
+
description="The search query to look up on the web. Be specific and include relevant medical keywords for better results.",
|
| 37 |
+
min_length=1,
|
| 38 |
+
max_length=500,
|
| 39 |
+
)
|
| 40 |
+
max_results: int = Field(
|
| 41 |
+
default=5,
|
| 42 |
+
description="Maximum number of search results to return (1-10)",
|
| 43 |
+
ge=1,
|
| 44 |
+
le=10,
|
| 45 |
+
)
|
| 46 |
+
region: str = Field(
|
| 47 |
+
default="us-en",
|
| 48 |
+
description="Region for search results (e.g., 'us-en', 'uk-en', 'ca-en')",
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class DuckDuckGoSearchTool(BaseTool):
|
| 53 |
+
"""
|
| 54 |
+
Tool that performs web searches using DuckDuckGo search engine for medical research.
|
| 55 |
+
|
| 56 |
+
This tool provides access to real-time web information through DuckDuckGo's
|
| 57 |
+
search API, specifically designed for medical agents that need to retrieve current
|
| 58 |
+
medical information, verify facts, or find resources on medical topics.
|
| 59 |
+
|
| 60 |
+
Features:
|
| 61 |
+
- Real-time web search capability for medical information
|
| 62 |
+
- Configurable number of results (1-10)
|
| 63 |
+
- Regional search support for localized medical results
|
| 64 |
+
- Robust error handling for network issues
|
| 65 |
+
- Structured result formatting for easy parsing
|
| 66 |
+
- Privacy-focused (DuckDuckGo doesn't track users)
|
| 67 |
+
- Medical-focused search optimization
|
| 68 |
+
|
| 69 |
+
Use Cases:
|
| 70 |
+
- Medical fact checking and verification
|
| 71 |
+
- Finding current medical news and updates
|
| 72 |
+
- Researching specific medical topics or questions
|
| 73 |
+
- Gathering multiple perspectives on medical issues
|
| 74 |
+
- Locating official medical resources and documentation
|
| 75 |
+
- Accessing current clinical guidelines and research
|
| 76 |
+
|
| 77 |
+
Rate Limiting:
|
| 78 |
+
DuckDuckGo has rate limits. Avoid making too many rapid requests
|
| 79 |
+
to prevent temporary blocking.
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
name: str = "duckduckgo_search"
|
| 83 |
+
description: str = (
|
| 84 |
+
"Search the web using DuckDuckGo to find current medical information, research, and resources. "
|
| 85 |
+
"Input should be a clear search query with relevant medical keywords. The tool returns a list of relevant web results "
|
| 86 |
+
"with titles, URLs, and brief snippets. Useful for medical fact-checking, finding current medical events, "
|
| 87 |
+
"researching medical topics, and gathering information from reliable medical sources. "
|
| 88 |
+
"Results are privacy-focused and don't track user searches. Optimized for medical research and clinical information."
|
| 89 |
+
)
|
| 90 |
+
args_schema: type[BaseModel] = WebSearchInput
|
| 91 |
+
return_direct: bool = False
|
| 92 |
+
|
| 93 |
+
def __init__(self, **kwargs):
|
| 94 |
+
"""Initialize the DuckDuckGo search tool."""
|
| 95 |
+
super().__init__(**kwargs)
|
| 96 |
+
|
| 97 |
+
if DDGS is None:
|
| 98 |
+
logger.error(
|
| 99 |
+
"duckduckgo-search package not installed. Install with: pip install duckduckgo-search"
|
| 100 |
+
)
|
| 101 |
+
raise ImportError(
|
| 102 |
+
"duckduckgo-search package is required for web search functionality"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
logger.info("DuckDuckGo search tool initialized successfully")
|
| 106 |
+
|
| 107 |
+
def _perform_search_sync(
|
| 108 |
+
self, query: str, max_results: int = 5, region: str = "us-en"
|
| 109 |
+
) -> Dict[str, Any]:
|
| 110 |
+
"""
|
| 111 |
+
Perform the actual web search using DuckDuckGo synchronously.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
query (str): The search query.
|
| 115 |
+
max_results (int): Maximum number of results to return.
|
| 116 |
+
region (str): Region for localized results.
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
Dict[str, Any]: Structured search results.
|
| 120 |
+
"""
|
| 121 |
+
logger.info(
|
| 122 |
+
f"Performing web search: '{query}' (max_results={max_results}, region={region})"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# Initialize DDGS with error handling
|
| 127 |
+
with DDGS() as ddgs:
|
| 128 |
+
# Perform the search
|
| 129 |
+
search_results = list(
|
| 130 |
+
ddgs.text(
|
| 131 |
+
keywords=query,
|
| 132 |
+
region=region,
|
| 133 |
+
safesearch="moderate",
|
| 134 |
+
timelimit=None,
|
| 135 |
+
max_results=max_results,
|
| 136 |
+
)
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Format results for the agent
|
| 140 |
+
formatted_results = []
|
| 141 |
+
for i, result in enumerate(search_results, 1):
|
| 142 |
+
formatted_result = {
|
| 143 |
+
"rank": i,
|
| 144 |
+
"title": result.get("title", "No title"),
|
| 145 |
+
"url": result.get("href", "No URL"),
|
| 146 |
+
"snippet": result.get("body", "No description available"),
|
| 147 |
+
"source": "DuckDuckGo",
|
| 148 |
+
}
|
| 149 |
+
formatted_results.append(formatted_result)
|
| 150 |
+
|
| 151 |
+
# Create summary for the agent
|
| 152 |
+
if formatted_results:
|
| 153 |
+
summary = (
|
| 154 |
+
f"Found {len(formatted_results)} results for '{query}'. Top results include: "
|
| 155 |
+
+ ", ".join([f"{r['title']}" for r in formatted_results[:3]])
|
| 156 |
+
)
|
| 157 |
+
else:
|
| 158 |
+
summary = f"No results found for '{query}'"
|
| 159 |
+
|
| 160 |
+
# Log successful completion
|
| 161 |
+
logger.info(
|
| 162 |
+
f"Web search completed successfully: {len(formatted_results)} results"
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
return {
|
| 166 |
+
"query": query,
|
| 167 |
+
"results_count": len(formatted_results),
|
| 168 |
+
"results": formatted_results,
|
| 169 |
+
"summary": summary,
|
| 170 |
+
"search_engine": "DuckDuckGo",
|
| 171 |
+
"timestamp": datetime.now().isoformat(),
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
except Exception as e:
|
| 175 |
+
error_msg = f"Web search failed for query '{query}': {str(e)}"
|
| 176 |
+
logger.error(f"{error_msg}")
|
| 177 |
+
|
| 178 |
+
return {
|
| 179 |
+
"query": query,
|
| 180 |
+
"results_count": 0,
|
| 181 |
+
"results": [],
|
| 182 |
+
"error": error_msg,
|
| 183 |
+
"search_engine": "DuckDuckGo",
|
| 184 |
+
"timestamp": datetime.now().isoformat(),
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
def _run(
|
| 188 |
+
self,
|
| 189 |
+
query: str,
|
| 190 |
+
max_results: int = 5,
|
| 191 |
+
region: str = "us-en",
|
| 192 |
+
run_manager: CallbackManagerForToolRun | None = None,
|
| 193 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
| 194 |
+
"""
|
| 195 |
+
Execute the web search synchronously.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
query (str): Search query
|
| 199 |
+
max_results (int): Maximum number of results
|
| 200 |
+
region (str): Search region
|
| 201 |
+
run_manager: Callback manager (unused)
|
| 202 |
+
|
| 203 |
+
Returns:
|
| 204 |
+
Tuple[Dict[str, Any], Dict[str, Any]]: A tuple containing:
|
| 205 |
+
- output: Dictionary with search results
|
| 206 |
+
- metadata: Dictionary with execution metadata
|
| 207 |
+
"""
|
| 208 |
+
# Create metadata structure
|
| 209 |
+
metadata = {
|
| 210 |
+
"query": query,
|
| 211 |
+
"max_results": max_results,
|
| 212 |
+
"region": region,
|
| 213 |
+
"timestamp": time.time(),
|
| 214 |
+
"tool": "duckduckgo_search",
|
| 215 |
+
"operation": "search",
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
try:
|
| 219 |
+
result = self._perform_search_sync(query, max_results, region)
|
| 220 |
+
|
| 221 |
+
# Check if search was successful
|
| 222 |
+
if "error" in result:
|
| 223 |
+
metadata["analysis_status"] = "failed"
|
| 224 |
+
metadata["error_details"] = result["error"]
|
| 225 |
+
else:
|
| 226 |
+
metadata["analysis_status"] = "completed"
|
| 227 |
+
metadata["results_count"] = result.get("results_count", 0)
|
| 228 |
+
|
| 229 |
+
return result, metadata
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
error_result = {
|
| 233 |
+
"query": query,
|
| 234 |
+
"results_count": 0,
|
| 235 |
+
"results": [],
|
| 236 |
+
"error": str(e),
|
| 237 |
+
"search_engine": "DuckDuckGo",
|
| 238 |
+
"timestamp": datetime.now().isoformat(),
|
| 239 |
+
}
|
| 240 |
+
metadata["analysis_status"] = "failed"
|
| 241 |
+
metadata["error_details"] = str(e)
|
| 242 |
+
|
| 243 |
+
return error_result, metadata
|
| 244 |
+
|
| 245 |
+
async def _arun(
|
| 246 |
+
self,
|
| 247 |
+
query: str,
|
| 248 |
+
max_results: int = 5,
|
| 249 |
+
region: str = "us-en",
|
| 250 |
+
run_manager: AsyncCallbackManagerForToolRun | None = None,
|
| 251 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
| 252 |
+
"""
|
| 253 |
+
Execute the web search asynchronously.
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
query (str): Search query
|
| 257 |
+
max_results (int): Maximum number of results
|
| 258 |
+
region (str): Search region
|
| 259 |
+
run_manager: Callback manager (unused)
|
| 260 |
+
|
| 261 |
+
Returns:
|
| 262 |
+
Tuple[Dict[str, Any], Dict[str, Any]]: A tuple containing:
|
| 263 |
+
- output: Dictionary with search results
|
| 264 |
+
- metadata: Dictionary with execution metadata
|
| 265 |
+
"""
|
| 266 |
+
# Try to get LangGraph stream writer for progress updates
|
| 267 |
+
writer = None
|
| 268 |
+
try:
|
| 269 |
+
from langgraph.config import get_stream_writer
|
| 270 |
+
|
| 271 |
+
writer = get_stream_writer()
|
| 272 |
+
except Exception:
|
| 273 |
+
# Stream writer not available (outside LangGraph context)
|
| 274 |
+
pass
|
| 275 |
+
|
| 276 |
+
if writer:
|
| 277 |
+
writer(
|
| 278 |
+
{
|
| 279 |
+
"tool_name": "DuckDuckGoSearchTool",
|
| 280 |
+
"status": "started",
|
| 281 |
+
"query": query,
|
| 282 |
+
"max_results": max_results,
|
| 283 |
+
"step": "Initiating web search",
|
| 284 |
+
}
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
try:
|
| 288 |
+
if writer:
|
| 289 |
+
writer(
|
| 290 |
+
{
|
| 291 |
+
"tool_name": "DuckDuckGoSearchTool",
|
| 292 |
+
"status": "searching",
|
| 293 |
+
"step": "Fetching results from DuckDuckGo API",
|
| 294 |
+
}
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Use asyncio to run sync search in executor
|
| 298 |
+
loop = asyncio.get_event_loop()
|
| 299 |
+
result, metadata = await loop.run_in_executor(
|
| 300 |
+
None, self._run, query, max_results, region
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
if writer:
|
| 304 |
+
# Parse result to get count for progress update
|
| 305 |
+
results_count = result.get("results_count", 0)
|
| 306 |
+
writer(
|
| 307 |
+
{
|
| 308 |
+
"tool_name": "DuckDuckGoSearchTool",
|
| 309 |
+
"status": "completed",
|
| 310 |
+
"step": f"Search completed with {results_count} results",
|
| 311 |
+
"results_count": results_count,
|
| 312 |
+
}
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
return result, metadata
|
| 316 |
+
|
| 317 |
+
except Exception as e:
|
| 318 |
+
if writer:
|
| 319 |
+
writer(
|
| 320 |
+
{
|
| 321 |
+
"tool_name": "DuckDuckGoSearchTool",
|
| 322 |
+
"status": "error",
|
| 323 |
+
"step": f"Search failed: {str(e)}",
|
| 324 |
+
"error": str(e),
|
| 325 |
+
}
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
error_result = {
|
| 329 |
+
"query": query,
|
| 330 |
+
"results_count": 0,
|
| 331 |
+
"results": [],
|
| 332 |
+
"error": str(e),
|
| 333 |
+
"search_engine": "DuckDuckGo",
|
| 334 |
+
"timestamp": datetime.now().isoformat(),
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
metadata = {
|
| 338 |
+
"query": query,
|
| 339 |
+
"max_results": max_results,
|
| 340 |
+
"region": region,
|
| 341 |
+
"timestamp": time.time(),
|
| 342 |
+
"tool": "duckduckgo_search",
|
| 343 |
+
"operation": "search",
|
| 344 |
+
"analysis_status": "failed",
|
| 345 |
+
"error_details": str(e),
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
return error_result, metadata
|
| 349 |
+
|
| 350 |
+
def get_search_summary(
|
| 351 |
+
self, query: str, max_results: int = 3
|
| 352 |
+
) -> dict[str, str | list[str]]:
|
| 353 |
+
"""
|
| 354 |
+
Get a quick summary of search results for a given query.
|
| 355 |
+
|
| 356 |
+
Args:
|
| 357 |
+
query (str): The search query.
|
| 358 |
+
max_results (int): Maximum number of results to summarize.
|
| 359 |
+
|
| 360 |
+
Returns:
|
| 361 |
+
Dict[str, Union[str, List[str]]]: Summary of search results.
|
| 362 |
+
"""
|
| 363 |
+
try:
|
| 364 |
+
result, _ = self._run(query, max_results)
|
| 365 |
+
|
| 366 |
+
if "error" in result:
|
| 367 |
+
return {
|
| 368 |
+
"query": query,
|
| 369 |
+
"status": "error",
|
| 370 |
+
"error": result["error"],
|
| 371 |
+
"results": [],
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
# Extract key information
|
| 375 |
+
results = result.get("results", [])
|
| 376 |
+
titles = [r["title"] for r in results]
|
| 377 |
+
urls = [r["url"] for r in results]
|
| 378 |
+
snippets = [
|
| 379 |
+
(
|
| 380 |
+
r["snippet"][:100] + "..."
|
| 381 |
+
if len(r["snippet"]) > 100
|
| 382 |
+
else r["snippet"]
|
| 383 |
+
)
|
| 384 |
+
for r in results
|
| 385 |
+
]
|
| 386 |
+
|
| 387 |
+
return {
|
| 388 |
+
"query": query,
|
| 389 |
+
"status": "success",
|
| 390 |
+
"total_results": result.get("results_count", 0),
|
| 391 |
+
"titles": titles,
|
| 392 |
+
"urls": urls,
|
| 393 |
+
"snippets": snippets,
|
| 394 |
+
}
|
| 395 |
+
|
| 396 |
+
except Exception as e:
|
| 397 |
+
logger.error(f"Error getting search summary: {e}")
|
| 398 |
+
return {
|
| 399 |
+
"query": query,
|
| 400 |
+
"status": "error",
|
| 401 |
+
"error": str(e),
|
| 402 |
+
"results": [],
|
| 403 |
+
}
|
medrax/tools/{web_browser.py → browsing/web_browser.py}
RENAMED
|
File without changes
|
medrax/tools/classification/arcplus.py
CHANGED
|
@@ -345,7 +345,8 @@ class ArcPlusClassifierTool(BaseTool):
|
|
| 345 |
predictions = predictions[: len(self.disease_list)]
|
| 346 |
|
| 347 |
# Create output dictionary mapping disease names to probabilities
|
| 348 |
-
|
|
|
|
| 349 |
|
| 350 |
metadata = {
|
| 351 |
"image_path": image_path,
|
|
|
|
| 345 |
predictions = predictions[: len(self.disease_list)]
|
| 346 |
|
| 347 |
# Create output dictionary mapping disease names to probabilities
|
| 348 |
+
# Convert numpy floats to native Python floats for proper serialization
|
| 349 |
+
output = dict(zip(self.disease_list, [float(pred) for pred in predictions]))
|
| 350 |
|
| 351 |
metadata = {
|
| 352 |
"image_path": image_path,
|
medrax/tools/llava_med.py
DELETED
|
@@ -1,193 +0,0 @@
|
|
| 1 |
-
from typing import Any, Dict, Optional, Tuple, Type
|
| 2 |
-
from pydantic import BaseModel, Field
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
|
| 6 |
-
from langchain_core.callbacks import (
|
| 7 |
-
AsyncCallbackManagerForToolRun,
|
| 8 |
-
CallbackManagerForToolRun,
|
| 9 |
-
)
|
| 10 |
-
from langchain_core.tools import BaseTool
|
| 11 |
-
|
| 12 |
-
from PIL import Image
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from medrax.llava.conversation import conv_templates
|
| 16 |
-
from medrax.llava.model.builder import load_pretrained_model
|
| 17 |
-
from medrax.llava.mm_utils import tokenizer_image_token, process_images
|
| 18 |
-
from medrax.llava.constants import (
|
| 19 |
-
IMAGE_TOKEN_INDEX,
|
| 20 |
-
DEFAULT_IMAGE_TOKEN,
|
| 21 |
-
DEFAULT_IM_START_TOKEN,
|
| 22 |
-
DEFAULT_IM_END_TOKEN,
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
class LlavaMedInput(BaseModel):
|
| 27 |
-
"""Input for the LLaVA-Med Visual QA tool. Only supports JPG or PNG images."""
|
| 28 |
-
|
| 29 |
-
question: str = Field(..., description="The question to ask about the medical image")
|
| 30 |
-
image_path: Optional[str] = Field(
|
| 31 |
-
None,
|
| 32 |
-
description="Path to the medical image file (optional), only supports JPG or PNG images",
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
class LlavaMedTool(BaseTool):
|
| 37 |
-
"""Tool that performs medical visual question answering using LLaVA-Med.
|
| 38 |
-
|
| 39 |
-
This tool uses a large language model fine-tuned on medical images to answer
|
| 40 |
-
questions about medical images. It can handle both image-based questions and
|
| 41 |
-
general medical questions without images.
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
name: str = "llava_med_qa"
|
| 45 |
-
description: str = (
|
| 46 |
-
"A tool that answers questions about biomedical images and general medical questions using LLaVA-Med. "
|
| 47 |
-
"While it can process chest X-rays, it may not be as reliable for detailed chest X-ray analysis. "
|
| 48 |
-
"Input should be a question and optionally a path to a medical image file."
|
| 49 |
-
)
|
| 50 |
-
args_schema: Type[BaseModel] = LlavaMedInput
|
| 51 |
-
tokenizer: Any = None
|
| 52 |
-
model: Any = None
|
| 53 |
-
image_processor: Any = None
|
| 54 |
-
context_len: int = 200000
|
| 55 |
-
|
| 56 |
-
def __init__(
|
| 57 |
-
self,
|
| 58 |
-
model_path: str = "microsoft/llava-med-v1.5-mistral-7b",
|
| 59 |
-
cache_dir: str = "/model-weights",
|
| 60 |
-
low_cpu_mem_usage: bool = True,
|
| 61 |
-
torch_dtype: torch.dtype = torch.bfloat16,
|
| 62 |
-
device: str = "cuda",
|
| 63 |
-
load_in_4bit: bool = False,
|
| 64 |
-
load_in_8bit: bool = False,
|
| 65 |
-
**kwargs,
|
| 66 |
-
):
|
| 67 |
-
super().__init__()
|
| 68 |
-
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
|
| 69 |
-
model_path=model_path,
|
| 70 |
-
model_base=None,
|
| 71 |
-
model_name=model_path,
|
| 72 |
-
load_in_4bit=load_in_4bit,
|
| 73 |
-
load_in_8bit=load_in_8bit,
|
| 74 |
-
cache_dir=cache_dir,
|
| 75 |
-
low_cpu_mem_usage=low_cpu_mem_usage,
|
| 76 |
-
torch_dtype=torch_dtype,
|
| 77 |
-
device=device,
|
| 78 |
-
**kwargs,
|
| 79 |
-
)
|
| 80 |
-
self.model.eval()
|
| 81 |
-
|
| 82 |
-
def _process_input(
|
| 83 |
-
self, question: str, image_path: Optional[str] = None
|
| 84 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 85 |
-
if self.model.config.mm_use_im_start_end:
|
| 86 |
-
question = (
|
| 87 |
-
DEFAULT_IM_START_TOKEN
|
| 88 |
-
+ DEFAULT_IMAGE_TOKEN
|
| 89 |
-
+ DEFAULT_IM_END_TOKEN
|
| 90 |
-
+ "\n"
|
| 91 |
-
+ question
|
| 92 |
-
)
|
| 93 |
-
else:
|
| 94 |
-
question = DEFAULT_IMAGE_TOKEN + "\n" + question
|
| 95 |
-
|
| 96 |
-
conv = conv_templates["vicuna_v1"].copy()
|
| 97 |
-
conv.append_message(conv.roles[0], question)
|
| 98 |
-
conv.append_message(conv.roles[1], None)
|
| 99 |
-
prompt = conv.get_prompt()
|
| 100 |
-
|
| 101 |
-
input_ids = (
|
| 102 |
-
tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
| 103 |
-
.unsqueeze(0)
|
| 104 |
-
.cuda()
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
image_tensor = None
|
| 108 |
-
if image_path:
|
| 109 |
-
image = Image.open(image_path)
|
| 110 |
-
image_tensor = process_images([image], self.image_processor, self.model.config)[0]
|
| 111 |
-
image_tensor = image_tensor.unsqueeze(0).half().cuda()
|
| 112 |
-
|
| 113 |
-
return input_ids, image_tensor
|
| 114 |
-
|
| 115 |
-
def _run(
|
| 116 |
-
self,
|
| 117 |
-
question: str,
|
| 118 |
-
image_path: Optional[str] = None,
|
| 119 |
-
run_manager: Optional[CallbackManagerForToolRun] = None,
|
| 120 |
-
) -> Tuple[Dict[str, Any], Dict]:
|
| 121 |
-
"""Answer a medical question, optionally based on an input image.
|
| 122 |
-
|
| 123 |
-
Args:
|
| 124 |
-
question (str): The medical question to answer.
|
| 125 |
-
image_path (Optional[str]): The path to the medical image file (if applicable).
|
| 126 |
-
run_manager (Optional[CallbackManagerForToolRun]): The callback manager for the tool run.
|
| 127 |
-
|
| 128 |
-
Returns:
|
| 129 |
-
Tuple[Dict[str, Any], Dict]: A tuple containing the output dictionary and metadata dictionary.
|
| 130 |
-
|
| 131 |
-
Raises:
|
| 132 |
-
Exception: If there's an error processing the input or generating the answer.
|
| 133 |
-
"""
|
| 134 |
-
try:
|
| 135 |
-
input_ids, image_tensor = self._process_input(question, image_path)
|
| 136 |
-
input_ids = input_ids.to(device=self.model.device)
|
| 137 |
-
image_tensor = image_tensor.to(device=self.model.device, dtype=self.model.dtype)
|
| 138 |
-
|
| 139 |
-
with torch.inference_mode():
|
| 140 |
-
output_ids = self.model.generate(
|
| 141 |
-
input_ids,
|
| 142 |
-
images=image_tensor,
|
| 143 |
-
do_sample=False,
|
| 144 |
-
temperature=0.2,
|
| 145 |
-
max_new_tokens=500,
|
| 146 |
-
use_cache=True,
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
answer = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
| 150 |
-
|
| 151 |
-
output = {
|
| 152 |
-
"answer": answer,
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
metadata = {
|
| 156 |
-
"question": question,
|
| 157 |
-
"image_path": image_path,
|
| 158 |
-
"analysis_status": "completed",
|
| 159 |
-
}
|
| 160 |
-
return output, metadata
|
| 161 |
-
except Exception as e:
|
| 162 |
-
output = {"error": f"Error generating answer: {str(e)}"}
|
| 163 |
-
metadata = {
|
| 164 |
-
"question": question,
|
| 165 |
-
"image_path": image_path,
|
| 166 |
-
"analysis_status": "failed",
|
| 167 |
-
}
|
| 168 |
-
return output, metadata
|
| 169 |
-
|
| 170 |
-
async def _arun(
|
| 171 |
-
self,
|
| 172 |
-
question: str,
|
| 173 |
-
image_path: Optional[str] = None,
|
| 174 |
-
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 175 |
-
) -> Tuple[Dict[str, Any], Dict]:
|
| 176 |
-
"""Asynchronously answer a medical question, optionally based on an input image.
|
| 177 |
-
|
| 178 |
-
This method currently calls the synchronous version, as the model inference
|
| 179 |
-
is not inherently asynchronous. For true asynchronous behavior, consider
|
| 180 |
-
using a separate thread or process.
|
| 181 |
-
|
| 182 |
-
Args:
|
| 183 |
-
question (str): The medical question to answer.
|
| 184 |
-
image_path (Optional[str]): The path to the medical image file (if applicable).
|
| 185 |
-
run_manager (Optional[AsyncCallbackManagerForToolRun]): The async callback manager for the tool run.
|
| 186 |
-
|
| 187 |
-
Returns:
|
| 188 |
-
Tuple[Dict[str, Any], Dict]: A tuple containing the output dictionary and metadata dictionary.
|
| 189 |
-
|
| 190 |
-
Raises:
|
| 191 |
-
Exception: If there's an error processing the input or generating the answer.
|
| 192 |
-
"""
|
| 193 |
-
return self._run(question, image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
medrax/tools/rag.py
CHANGED
|
@@ -48,14 +48,14 @@ class RAGTool(BaseTool):
|
|
| 48 |
self.rag = CohereRAG(config)
|
| 49 |
self.chain = self.rag.initialize_rag(with_memory=True)
|
| 50 |
|
| 51 |
-
def _run(self, query: str) -> Tuple[Dict[str, Any], Dict
|
| 52 |
"""Execute the RAG tool with the given query.
|
| 53 |
|
| 54 |
Args:
|
| 55 |
query (str): Medical question to answer
|
| 56 |
|
| 57 |
Returns:
|
| 58 |
-
Tuple[Dict[str, Any], Dict
|
| 59 |
"""
|
| 60 |
try:
|
| 61 |
result = self.chain.invoke({"query": query})
|
|
@@ -87,14 +87,14 @@ class RAGTool(BaseTool):
|
|
| 87 |
}
|
| 88 |
return output, metadata
|
| 89 |
|
| 90 |
-
async def _arun(self, query: str) -> Tuple[Dict[str, Any], Dict
|
| 91 |
"""Async version of _run.
|
| 92 |
|
| 93 |
Args:
|
| 94 |
query (str): Medical question to answer
|
| 95 |
|
| 96 |
Returns:
|
| 97 |
-
Tuple[Dict[str, Any], Dict
|
| 98 |
|
| 99 |
Raises:
|
| 100 |
NotImplementedError: Async not implemented yet
|
|
|
|
| 48 |
self.rag = CohereRAG(config)
|
| 49 |
self.chain = self.rag.initialize_rag(with_memory=True)
|
| 50 |
|
| 51 |
+
def _run(self, query: str) -> Tuple[Dict[str, Any], Dict]:
|
| 52 |
"""Execute the RAG tool with the given query.
|
| 53 |
|
| 54 |
Args:
|
| 55 |
query (str): Medical question to answer
|
| 56 |
|
| 57 |
Returns:
|
| 58 |
+
Tuple[Dict[str, Any], Dict]: Output dictionary and metadata dictionary
|
| 59 |
"""
|
| 60 |
try:
|
| 61 |
result = self.chain.invoke({"query": query})
|
|
|
|
| 87 |
}
|
| 88 |
return output, metadata
|
| 89 |
|
| 90 |
+
async def _arun(self, query: str) -> Tuple[Dict[str, Any], Dict]:
|
| 91 |
"""Async version of _run.
|
| 92 |
|
| 93 |
Args:
|
| 94 |
query (str): Medical question to answer
|
| 95 |
|
| 96 |
Returns:
|
| 97 |
+
Tuple[Dict[str, Any], Dict]: Output dictionary and metadata dictionary
|
| 98 |
|
| 99 |
Raises:
|
| 100 |
NotImplementedError: Async not implemented yet
|
medrax/tools/segmentation/__init__.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Medical image segmentation tools for MedRAX2."""
|
| 2 |
+
|
| 3 |
+
from .segmentation import ChestXRaySegmentationTool, ChestXRaySegmentationInput, OrganMetrics
|
| 4 |
+
from .medsam2 import MedSAM2Tool, MedSAM2Input
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"ChestXRaySegmentationTool",
|
| 8 |
+
"ChestXRaySegmentationInput",
|
| 9 |
+
"OrganMetrics",
|
| 10 |
+
"MedSAM2Tool",
|
| 11 |
+
"MedSAM2Input"
|
| 12 |
+
]
|
medrax/tools/{medsam2.py → segmentation/medsam2.py}
RENAMED
|
@@ -15,7 +15,7 @@ from langchain_core.callbacks import (
|
|
| 15 |
from langchain_core.tools import BaseTool
|
| 16 |
|
| 17 |
# Add MedSAM2 to Python path for proper module resolution
|
| 18 |
-
medsam2_path = str(Path(__file__).parent.parent.parent / "MedSAM2")
|
| 19 |
if medsam2_path not in sys.path:
|
| 20 |
sys.path.append(medsam2_path)
|
| 21 |
|
|
@@ -93,7 +93,7 @@ class MedSAM2Tool(BaseTool):
|
|
| 93 |
if GlobalHydra.instance().is_initialized():
|
| 94 |
GlobalHydra.instance().clear()
|
| 95 |
|
| 96 |
-
config_dir = Path(__file__).parent.parent.parent / "MedSAM2" / "sam2" / "configs"
|
| 97 |
initialize_config_dir(config_dir=str(config_dir), version_base="1.2")
|
| 98 |
|
| 99 |
hf_hub_download(
|
|
|
|
| 15 |
from langchain_core.tools import BaseTool
|
| 16 |
|
| 17 |
# Add MedSAM2 to Python path for proper module resolution
|
| 18 |
+
medsam2_path = str(Path(__file__).parent.parent.parent.parent / "MedSAM2")
|
| 19 |
if medsam2_path not in sys.path:
|
| 20 |
sys.path.append(medsam2_path)
|
| 21 |
|
|
|
|
| 93 |
if GlobalHydra.instance().is_initialized():
|
| 94 |
GlobalHydra.instance().clear()
|
| 95 |
|
| 96 |
+
config_dir = Path(__file__).parent.parent.parent.parent / "MedSAM2" / "sam2" / "configs"
|
| 97 |
initialize_config_dir(config_dir=str(config_dir), version_base="1.2")
|
| 98 |
|
| 99 |
hf_hub_download(
|
medrax/tools/{segmentation.py → segmentation/segmentation.py}
RENAMED
|
File without changes
|
medrax/tools/vqa/llava_med.py
CHANGED
|
@@ -117,7 +117,7 @@ class LlavaMedTool(BaseTool):
|
|
| 117 |
question: str,
|
| 118 |
image_path: Optional[str] = None,
|
| 119 |
run_manager: Optional[CallbackManagerForToolRun] = None,
|
| 120 |
-
) -> Tuple[str, Dict]:
|
| 121 |
"""Answer a medical question, optionally based on an input image.
|
| 122 |
|
| 123 |
Args:
|
|
@@ -126,7 +126,7 @@ class LlavaMedTool(BaseTool):
|
|
| 126 |
run_manager (Optional[CallbackManagerForToolRun]): The callback manager for the tool run.
|
| 127 |
|
| 128 |
Returns:
|
| 129 |
-
Tuple[str, Dict]: A tuple containing the
|
| 130 |
|
| 131 |
Raises:
|
| 132 |
Exception: If there's an error processing the input or generating the answer.
|
|
@@ -146,7 +146,12 @@ class LlavaMedTool(BaseTool):
|
|
| 146 |
use_cache=True,
|
| 147 |
)
|
| 148 |
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
metadata = {
|
| 151 |
"question": question,
|
| 152 |
"image_path": image_path,
|
|
@@ -154,18 +159,20 @@ class LlavaMedTool(BaseTool):
|
|
| 154 |
}
|
| 155 |
return output, metadata
|
| 156 |
except Exception as e:
|
| 157 |
-
|
|
|
|
| 158 |
"question": question,
|
| 159 |
"image_path": image_path,
|
| 160 |
"analysis_status": "failed",
|
| 161 |
}
|
|
|
|
| 162 |
|
| 163 |
async def _arun(
|
| 164 |
self,
|
| 165 |
question: str,
|
| 166 |
image_path: Optional[str] = None,
|
| 167 |
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 168 |
-
) -> Tuple[str, Dict]:
|
| 169 |
"""Asynchronously answer a medical question, optionally based on an input image.
|
| 170 |
|
| 171 |
This method currently calls the synchronous version, as the model inference
|
|
@@ -178,9 +185,9 @@ class LlavaMedTool(BaseTool):
|
|
| 178 |
run_manager (Optional[AsyncCallbackManagerForToolRun]): The async callback manager for the tool run.
|
| 179 |
|
| 180 |
Returns:
|
| 181 |
-
Tuple[str, Dict]: A tuple containing the
|
| 182 |
|
| 183 |
Raises:
|
| 184 |
Exception: If there's an error processing the input or generating the answer.
|
| 185 |
"""
|
| 186 |
-
return self._run(question, image_path)
|
|
|
|
| 117 |
question: str,
|
| 118 |
image_path: Optional[str] = None,
|
| 119 |
run_manager: Optional[CallbackManagerForToolRun] = None,
|
| 120 |
+
) -> Tuple[Dict[str, Any], Dict]:
|
| 121 |
"""Answer a medical question, optionally based on an input image.
|
| 122 |
|
| 123 |
Args:
|
|
|
|
| 126 |
run_manager (Optional[CallbackManagerForToolRun]): The callback manager for the tool run.
|
| 127 |
|
| 128 |
Returns:
|
| 129 |
+
Tuple[Dict[str, Any], Dict]: A tuple containing the output dictionary and metadata dictionary.
|
| 130 |
|
| 131 |
Raises:
|
| 132 |
Exception: If there's an error processing the input or generating the answer.
|
|
|
|
| 146 |
use_cache=True,
|
| 147 |
)
|
| 148 |
|
| 149 |
+
answer = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
| 150 |
+
|
| 151 |
+
output = {
|
| 152 |
+
"answer": answer,
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
metadata = {
|
| 156 |
"question": question,
|
| 157 |
"image_path": image_path,
|
|
|
|
| 159 |
}
|
| 160 |
return output, metadata
|
| 161 |
except Exception as e:
|
| 162 |
+
output = {"error": f"Error generating answer: {str(e)}"}
|
| 163 |
+
metadata = {
|
| 164 |
"question": question,
|
| 165 |
"image_path": image_path,
|
| 166 |
"analysis_status": "failed",
|
| 167 |
}
|
| 168 |
+
return output, metadata
|
| 169 |
|
| 170 |
async def _arun(
|
| 171 |
self,
|
| 172 |
question: str,
|
| 173 |
image_path: Optional[str] = None,
|
| 174 |
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 175 |
+
) -> Tuple[Dict[str, Any], Dict]:
|
| 176 |
"""Asynchronously answer a medical question, optionally based on an input image.
|
| 177 |
|
| 178 |
This method currently calls the synchronous version, as the model inference
|
|
|
|
| 185 |
run_manager (Optional[AsyncCallbackManagerForToolRun]): The async callback manager for the tool run.
|
| 186 |
|
| 187 |
Returns:
|
| 188 |
+
Tuple[Dict[str, Any], Dict]: A tuple containing the output dictionary and metadata dictionary.
|
| 189 |
|
| 190 |
Raises:
|
| 191 |
Exception: If there's an error processing the input or generating the answer.
|
| 192 |
"""
|
| 193 |
+
return self._run(question, image_path)
|
medrax/tools/vqa/xray_vqa.py
CHANGED
|
@@ -183,4 +183,4 @@ class CheXagentXRayVQATool(BaseTool):
|
|
| 183 |
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 184 |
) -> Tuple[Dict[str, Any], Dict]:
|
| 185 |
"""Async version of _run."""
|
| 186 |
-
return self._run(image_paths, prompt, max_new_tokens)
|
|
|
|
| 183 |
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 184 |
) -> Tuple[Dict[str, Any], Dict]:
|
| 185 |
"""Async version of _run."""
|
| 186 |
+
return self._run(image_paths, prompt, max_new_tokens)
|
medrax/tools/{generation.py → xray_generation.py}
RENAMED
|
File without changes
|
medrax/tools/xray_vqa.py
DELETED
|
@@ -1,186 +0,0 @@
|
|
| 1 |
-
from typing import Dict, List, Optional, Tuple, Type, Any
|
| 2 |
-
from pathlib import Path
|
| 3 |
-
from pydantic import BaseModel, Field
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
-
import transformers
|
| 7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
-
from langchain_core.callbacks import (
|
| 9 |
-
AsyncCallbackManagerForToolRun,
|
| 10 |
-
CallbackManagerForToolRun,
|
| 11 |
-
)
|
| 12 |
-
from langchain_core.tools import BaseTool
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
class XRayVQAToolInput(BaseModel):
|
| 16 |
-
"""Input schema for the CheXagent Tool."""
|
| 17 |
-
|
| 18 |
-
image_paths: List[str] = Field(
|
| 19 |
-
..., description="List of paths to chest X-ray images to analyze"
|
| 20 |
-
)
|
| 21 |
-
prompt: str = Field(..., description="Question or instruction about the chest X-ray images")
|
| 22 |
-
max_new_tokens: int = Field(
|
| 23 |
-
512, description="Maximum number of tokens to generate in the response"
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class XRayVQATool(BaseTool):
|
| 28 |
-
"""Tool that leverages CheXagent for comprehensive chest X-ray analysis."""
|
| 29 |
-
|
| 30 |
-
name: str = "chest_xray_expert"
|
| 31 |
-
description: str = (
|
| 32 |
-
"A versatile tool for analyzing chest X-rays. "
|
| 33 |
-
"Can perform multiple tasks including: visual question answering, report generation, "
|
| 34 |
-
"abnormality detection, comparative analysis, anatomical description, "
|
| 35 |
-
"and clinical interpretation. Input should be paths to X-ray images "
|
| 36 |
-
"and a natural language prompt describing the analysis needed."
|
| 37 |
-
)
|
| 38 |
-
args_schema: Type[BaseModel] = XRayVQAToolInput
|
| 39 |
-
return_direct: bool = True
|
| 40 |
-
cache_dir: Optional[str] = None
|
| 41 |
-
device: Optional[str] = None
|
| 42 |
-
dtype: torch.dtype = torch.bfloat16
|
| 43 |
-
tokenizer: Optional[AutoTokenizer] = None
|
| 44 |
-
model: Optional[AutoModelForCausalLM] = None
|
| 45 |
-
|
| 46 |
-
def __init__(
|
| 47 |
-
self,
|
| 48 |
-
model_name: str = "StanfordAIMI/CheXagent-2-3b",
|
| 49 |
-
device: Optional[str] = "cuda",
|
| 50 |
-
dtype: torch.dtype = torch.bfloat16,
|
| 51 |
-
cache_dir: Optional[str] = None,
|
| 52 |
-
**kwargs: Any,
|
| 53 |
-
) -> None:
|
| 54 |
-
"""Initialize the XRayVQATool.
|
| 55 |
-
|
| 56 |
-
Args:
|
| 57 |
-
model_name: Name of the CheXagent model to use
|
| 58 |
-
device: Device to run model on (cuda/cpu)
|
| 59 |
-
dtype: Data type for model weights
|
| 60 |
-
cache_dir: Directory to cache downloaded models
|
| 61 |
-
**kwargs: Additional arguments
|
| 62 |
-
"""
|
| 63 |
-
super().__init__(**kwargs)
|
| 64 |
-
|
| 65 |
-
# Dangerous code, but works for now
|
| 66 |
-
import transformers
|
| 67 |
-
|
| 68 |
-
original_transformers_version = transformers.__version__
|
| 69 |
-
transformers.__version__ = "4.40.0"
|
| 70 |
-
|
| 71 |
-
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 72 |
-
self.dtype = dtype
|
| 73 |
-
self.cache_dir = cache_dir
|
| 74 |
-
|
| 75 |
-
# Load tokenizer and model
|
| 76 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 77 |
-
model_name,
|
| 78 |
-
trust_remote_code=True,
|
| 79 |
-
cache_dir=cache_dir,
|
| 80 |
-
)
|
| 81 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 82 |
-
model_name,
|
| 83 |
-
device_map=self.device,
|
| 84 |
-
trust_remote_code=True,
|
| 85 |
-
cache_dir=cache_dir,
|
| 86 |
-
)
|
| 87 |
-
self.model = self.model.to(dtype=self.dtype)
|
| 88 |
-
self.model.eval()
|
| 89 |
-
|
| 90 |
-
transformers.__version__ = original_transformers_version
|
| 91 |
-
|
| 92 |
-
def _generate_response(self, image_paths: List[str], prompt: str, max_new_tokens: int) -> str:
|
| 93 |
-
"""Generate response using CheXagent model.
|
| 94 |
-
|
| 95 |
-
Args:
|
| 96 |
-
image_paths: List of paths to chest X-ray images
|
| 97 |
-
prompt: Question or instruction about the images
|
| 98 |
-
max_new_tokens: Maximum number of tokens to generate
|
| 99 |
-
Returns:
|
| 100 |
-
str: Model's response
|
| 101 |
-
"""
|
| 102 |
-
query = self.tokenizer.from_list_format(
|
| 103 |
-
[*[{"image": path} for path in image_paths], {"text": prompt}]
|
| 104 |
-
)
|
| 105 |
-
conv = [
|
| 106 |
-
{"from": "system", "value": "You are a helpful assistant."},
|
| 107 |
-
{"from": "human", "value": query},
|
| 108 |
-
]
|
| 109 |
-
input_ids = self.tokenizer.apply_chat_template(
|
| 110 |
-
conv, add_generation_prompt=True, return_tensors="pt"
|
| 111 |
-
).to(device=self.device)
|
| 112 |
-
|
| 113 |
-
# Run inference
|
| 114 |
-
with torch.inference_mode():
|
| 115 |
-
output = self.model.generate(
|
| 116 |
-
input_ids,
|
| 117 |
-
do_sample=False,
|
| 118 |
-
num_beams=1,
|
| 119 |
-
temperature=1.0,
|
| 120 |
-
top_p=1.0,
|
| 121 |
-
use_cache=True,
|
| 122 |
-
max_new_tokens=max_new_tokens,
|
| 123 |
-
)[0]
|
| 124 |
-
response = self.tokenizer.decode(output[input_ids.size(1) : -1])
|
| 125 |
-
|
| 126 |
-
return response
|
| 127 |
-
|
| 128 |
-
def _run(
|
| 129 |
-
self,
|
| 130 |
-
image_paths: List[str],
|
| 131 |
-
prompt: str,
|
| 132 |
-
max_new_tokens: int = 512,
|
| 133 |
-
run_manager: Optional[CallbackManagerForToolRun] = None,
|
| 134 |
-
) -> Tuple[Dict[str, Any], Dict]:
|
| 135 |
-
"""Execute the chest X-ray analysis.
|
| 136 |
-
|
| 137 |
-
Args:
|
| 138 |
-
image_paths: List of paths to chest X-ray images
|
| 139 |
-
prompt: Question or instruction about the images
|
| 140 |
-
max_new_tokens: Maximum number of tokens to generate
|
| 141 |
-
run_manager: Optional callback manager
|
| 142 |
-
|
| 143 |
-
Returns:
|
| 144 |
-
Tuple[Dict[str, Any], Dict]: Output dictionary and metadata dictionary
|
| 145 |
-
"""
|
| 146 |
-
try:
|
| 147 |
-
# Verify image paths
|
| 148 |
-
for path in image_paths:
|
| 149 |
-
if not Path(path).is_file():
|
| 150 |
-
raise FileNotFoundError(f"Image file not found: {path}")
|
| 151 |
-
|
| 152 |
-
response = self._generate_response(image_paths, prompt, max_new_tokens)
|
| 153 |
-
|
| 154 |
-
output = {
|
| 155 |
-
"response": response,
|
| 156 |
-
}
|
| 157 |
-
|
| 158 |
-
metadata = {
|
| 159 |
-
"image_paths": image_paths,
|
| 160 |
-
"prompt": prompt,
|
| 161 |
-
"max_new_tokens": max_new_tokens,
|
| 162 |
-
"analysis_status": "completed",
|
| 163 |
-
}
|
| 164 |
-
|
| 165 |
-
return output, metadata
|
| 166 |
-
|
| 167 |
-
except Exception as e:
|
| 168 |
-
output = {"error": str(e)}
|
| 169 |
-
metadata = {
|
| 170 |
-
"image_paths": image_paths,
|
| 171 |
-
"prompt": prompt,
|
| 172 |
-
"max_new_tokens": max_new_tokens,
|
| 173 |
-
"analysis_status": "failed",
|
| 174 |
-
"error_details": str(e),
|
| 175 |
-
}
|
| 176 |
-
return output, metadata
|
| 177 |
-
|
| 178 |
-
async def _arun(
|
| 179 |
-
self,
|
| 180 |
-
image_paths: List[str],
|
| 181 |
-
prompt: str,
|
| 182 |
-
max_new_tokens: int = 512,
|
| 183 |
-
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 184 |
-
) -> Tuple[Dict[str, Any], Dict]:
|
| 185 |
-
"""Async version of _run."""
|
| 186 |
-
return self._run(image_paths, prompt, max_new_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pyproject.toml
CHANGED
|
@@ -50,7 +50,7 @@ dependencies = [
|
|
| 50 |
"fastapi>=0.68.0",
|
| 51 |
"einops>=0.3.0",
|
| 52 |
"einops-exts>=0.0.4",
|
| 53 |
-
"timm
|
| 54 |
"tiktoken>=0.3.0",
|
| 55 |
"openai>=0.27.0",
|
| 56 |
"backoff>=1.10.0",
|
|
@@ -75,6 +75,7 @@ dependencies = [
|
|
| 75 |
"seaborn>=0.12.0",
|
| 76 |
"huggingface_hub>=0.17.0",
|
| 77 |
"iopath>=0.1.10",
|
|
|
|
| 78 |
]
|
| 79 |
|
| 80 |
[project.optional-dependencies]
|
|
|
|
| 50 |
"fastapi>=0.68.0",
|
| 51 |
"einops>=0.3.0",
|
| 52 |
"einops-exts>=0.0.4",
|
| 53 |
+
"timm==0.5.4",
|
| 54 |
"tiktoken>=0.3.0",
|
| 55 |
"openai>=0.27.0",
|
| 56 |
"backoff>=1.10.0",
|
|
|
|
| 75 |
"seaborn>=0.12.0",
|
| 76 |
"huggingface_hub>=0.17.0",
|
| 77 |
"iopath>=0.1.10",
|
| 78 |
+
"duckduckgo-search>=4.0.0",
|
| 79 |
]
|
| 80 |
|
| 81 |
[project.optional-dependencies]
|