Fix merge conflicts
Browse files- README.md +49 -5
- main.py +43 -32
- medrax/models/__init__.py +5 -0
- medrax/models/model_factory.py +140 -0
- medrax/tools/__init__.py +2 -1
- medrax/tools/classification/__init__.py +11 -0
- medrax/tools/classification/arcplus.py +392 -0
- medrax/tools/{classification.py → classification/torchxrayvision.py} +6 -6
- medrax/tools/web_browser.py +215 -0
- pyproject.toml +1 -0
- quickstart.py +2 -2
README.md
CHANGED
|
@@ -15,7 +15,7 @@ Chest X-rays (CXRs) play an integral role in driving critical decisions in disea
|
|
| 15 |
## MedRAX
|
| 16 |
MedRAX is built on a robust technical foundation:
|
| 17 |
- **Core Architecture**: Built on LangChain and LangGraph frameworks
|
| 18 |
-
- **Language
|
| 19 |
- **Deployment**: Supports both local and cloud-based deployments
|
| 20 |
- **Interface**: Production-ready interface built with Gradio
|
| 21 |
- **Modular Design**: Tool-agnostic architecture allowing easy integration of new capabilities
|
|
@@ -27,6 +27,7 @@ MedRAX is built on a robust technical foundation:
|
|
| 27 |
- **Report Generation**: Implements SwinV2 Transformer trained on CheXpert Plus for detailed medical reporting
|
| 28 |
- **Disease Classification**: Leverages DenseNet-121 from TorchXRayVision for detecting 18 pathology classes
|
| 29 |
- **X-ray Generation**: Utilizes RoentGen for synthetic CXR generation
|
|
|
|
| 30 |
- **Utilities**: Includes DICOM processing, visualization tools, and custom plotting capabilities
|
| 31 |
<br><br>
|
| 32 |
|
|
@@ -103,7 +104,8 @@ MedRAX supports selective tool initialization, allowing you to use only the tool
|
|
| 103 |
```python
|
| 104 |
selected_tools = [
|
| 105 |
"ImageVisualizerTool",
|
| 106 |
-
"
|
|
|
|
| 107 |
"ChestXRaySegmentationTool",
|
| 108 |
# Add or remove tools as needed
|
| 109 |
]
|
|
@@ -120,9 +122,17 @@ agent, tools_dict = initialize_agent(
|
|
| 120 |
|
| 121 |
The following tools will automatically download their model weights when initialized:
|
| 122 |
|
| 123 |
-
### Classification
|
| 124 |
```python
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
```
|
| 127 |
|
| 128 |
### Segmentation Tool
|
|
@@ -180,6 +190,7 @@ No additional model weights required:
|
|
| 180 |
```python
|
| 181 |
ImageVisualizerTool()
|
| 182 |
DicomProcessorTool(temp_dir=temp_dir)
|
|
|
|
| 183 |
```
|
| 184 |
<br>
|
| 185 |
|
|
@@ -239,12 +250,45 @@ The `MedicalRAGTool` uses a Pinecone vector database to store and retrieve medic
|
|
| 239 |
- Some tools (LLaVA-Med, Grounding) are more resource-intensive
|
| 240 |
<br>
|
| 241 |
|
| 242 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
If you are running a local LLM using frameworks like [Ollama](https://ollama.com/) or [LM Studio](https://lmstudio.ai/), you need to configure your environment variables accordingly. For example:
|
| 244 |
```
|
| 245 |
export OPENAI_BASE_URL="http://localhost:11434/v1"
|
| 246 |
export OPENAI_API_KEY="ollama"
|
| 247 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
<br>
|
| 249 |
|
| 250 |
## Star History
|
|
|
|
| 15 |
## MedRAX
|
| 16 |
MedRAX is built on a robust technical foundation:
|
| 17 |
- **Core Architecture**: Built on LangChain and LangGraph frameworks
|
| 18 |
+
- **Language Models**: Supports multiple LLM providers including OpenAI (GPT-4o) and Google (Gemini) models
|
| 19 |
- **Deployment**: Supports both local and cloud-based deployments
|
| 20 |
- **Interface**: Production-ready interface built with Gradio
|
| 21 |
- **Modular Design**: Tool-agnostic architecture allowing easy integration of new capabilities
|
|
|
|
| 27 |
- **Report Generation**: Implements SwinV2 Transformer trained on CheXpert Plus for detailed medical reporting
|
| 28 |
- **Disease Classification**: Leverages DenseNet-121 from TorchXRayVision for detecting 18 pathology classes
|
| 29 |
- **X-ray Generation**: Utilizes RoentGen for synthetic CXR generation
|
| 30 |
+
- **Web Browser**: Provides web search capabilities and URL content retrieval using Google Custom Search API
|
| 31 |
- **Utilities**: Includes DICOM processing, visualization tools, and custom plotting capabilities
|
| 32 |
<br><br>
|
| 33 |
|
|
|
|
| 104 |
```python
|
| 105 |
selected_tools = [
|
| 106 |
"ImageVisualizerTool",
|
| 107 |
+
"TorchXRayVisionClassifierTool", # Renamed from ChestXRayClassifierTool
|
| 108 |
+
"ArcPlusClassifierTool", # New ArcPlus classifier
|
| 109 |
"ChestXRaySegmentationTool",
|
| 110 |
# Add or remove tools as needed
|
| 111 |
]
|
|
|
|
| 122 |
|
| 123 |
The following tools will automatically download their model weights when initialized:
|
| 124 |
|
| 125 |
+
### Classification Tools
|
| 126 |
```python
|
| 127 |
+
# TorchXRayVision-based classifier (original)
|
| 128 |
+
TorchXRayVisionClassifierTool(device=device)
|
| 129 |
+
|
| 130 |
+
# ArcPlus SwinTransformer-based classifier (new)
|
| 131 |
+
ArcPlusClassifierTool(
|
| 132 |
+
model_path="/path/to/Ark6_swinLarge768_ep50.pth.tar", # Optional
|
| 133 |
+
num_classes=18, # Default
|
| 134 |
+
device=device
|
| 135 |
+
)
|
| 136 |
```
|
| 137 |
|
| 138 |
### Segmentation Tool
|
|
|
|
| 190 |
```python
|
| 191 |
ImageVisualizerTool()
|
| 192 |
DicomProcessorTool(temp_dir=temp_dir)
|
| 193 |
+
WebBrowserTool() # Requires Google Search API credentials
|
| 194 |
```
|
| 195 |
<br>
|
| 196 |
|
|
|
|
| 250 |
- Some tools (LLaVA-Med, Grounding) are more resource-intensive
|
| 251 |
<br>
|
| 252 |
|
| 253 |
+
### Language Model Options
|
| 254 |
+
MedRAX supports multiple language model providers:
|
| 255 |
+
|
| 256 |
+
#### OpenAI Models
|
| 257 |
+
Supported prefixes: `gpt-` and `chatgpt-`
|
| 258 |
+
```
|
| 259 |
+
export OPENAI_API_KEY="your-openai-api-key"
|
| 260 |
+
export OPENAI_BASE_URL="https://api.openai.com/v1" # Optional for custom endpoints
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
#### Google Gemini Models
|
| 264 |
+
Supported prefix: `gemini-`
|
| 265 |
+
```
|
| 266 |
+
export GOOGLE_API_KEY="your-google-api-key"
|
| 267 |
+
```
|
| 268 |
+
|
| 269 |
+
#### OpenRouter Models (Open Source & Proprietary)
|
| 270 |
+
Supported prefix: `openrouter-`
|
| 271 |
+
|
| 272 |
+
Access many open source and proprietary models via [OpenRouter](https://openrouter.ai/):
|
| 273 |
+
```
|
| 274 |
+
export OPENROUTER_API_KEY="your-openrouter-api-key"
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
**Note:** Tool compatibility may vary with open-source models. For best results with tools, we recommend using OpenAI or Google Gemini models.
|
| 278 |
+
|
| 279 |
+
#### Local LLMs
|
| 280 |
If you are running a local LLM using frameworks like [Ollama](https://ollama.com/) or [LM Studio](https://lmstudio.ai/), you need to configure your environment variables accordingly. For example:
|
| 281 |
```
|
| 282 |
export OPENAI_BASE_URL="http://localhost:11434/v1"
|
| 283 |
export OPENAI_API_KEY="ollama"
|
| 284 |
```
|
| 285 |
+
|
| 286 |
+
#### WebBrowserTool Configuration
|
| 287 |
+
If you're using the WebBrowserTool, you'll need to set these environment variables:
|
| 288 |
+
```
|
| 289 |
+
export GOOGLE_SEARCH_API_KEY="your-google-search-api-key"
|
| 290 |
+
export GOOGLE_SEARCH_ENGINE_ID="your-google-search-engine-id"
|
| 291 |
+
```
|
| 292 |
<br>
|
| 293 |
|
| 294 |
## Star History
|
main.py
CHANGED
|
@@ -17,6 +17,7 @@ from transformers import logging
|
|
| 17 |
|
| 18 |
from langgraph.checkpoint.memory import MemorySaver
|
| 19 |
from langchain_openai import ChatOpenAI
|
|
|
|
| 20 |
|
| 21 |
from interface import create_demo
|
| 22 |
from medrax.agent import *
|
|
@@ -37,12 +38,12 @@ def initialize_agent(
|
|
| 37 |
model_dir: str = "/model-weights",
|
| 38 |
temp_dir: str = "temp",
|
| 39 |
device: str = "cpu",
|
| 40 |
-
model: str = "gpt-
|
| 41 |
temperature: float = 0.7,
|
| 42 |
top_p: float = 0.95,
|
| 43 |
rag_config: Optional[RAGConfig] = None,
|
| 44 |
-
|
| 45 |
-
)
|
| 46 |
"""Initialize the MedRAX agent with specified tools and configuration.
|
| 47 |
|
| 48 |
Args:
|
|
@@ -51,11 +52,11 @@ def initialize_agent(
|
|
| 51 |
model_dir (str, optional): Directory containing model weights. Defaults to "/model-weights".
|
| 52 |
temp_dir (str, optional): Directory for temporary files. Defaults to "temp".
|
| 53 |
device (str, optional): Device to run models on. Defaults to "cuda".
|
| 54 |
-
model (str, optional): Model to use. Defaults to "
|
| 55 |
temperature (float, optional): Temperature for the model. Defaults to 0.7.
|
| 56 |
top_p (float, optional): Top P for the model. Defaults to 0.95.
|
| 57 |
rag_config (RAGConfig, optional): Configuration for the RAG tool. Defaults to None.
|
| 58 |
-
|
| 59 |
|
| 60 |
Returns:
|
| 61 |
Tuple[Agent, Dict[str, BaseTool]]: Initialized agent and dictionary of tool instances
|
|
@@ -64,9 +65,9 @@ def initialize_agent(
|
|
| 64 |
prompts = load_prompts_from_file(prompt_file)
|
| 65 |
prompt = prompts["MEDICAL_ASSISTANT"]
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
"
|
| 70 |
"ChestXRaySegmentationTool": lambda: ChestXRaySegmentationTool(device=device),
|
| 71 |
"LlavaMedTool": lambda: LlavaMedTool(cache_dir=model_dir, device=device, load_in_8bit=True),
|
| 72 |
"XRayVQATool": lambda: XRayVQATool(cache_dir=model_dir, device=device),
|
|
@@ -82,6 +83,7 @@ def initialize_agent(
|
|
| 82 |
"ImageVisualizerTool": lambda: ImageVisualizerTool(),
|
| 83 |
"DicomProcessorTool": lambda: DicomProcessorTool(temp_dir=temp_dir),
|
| 84 |
"MedicalRAGTool": lambda: RAGTool(config=rag_config),
|
|
|
|
| 85 |
}
|
| 86 |
|
| 87 |
# Initialize only selected tools or all if none specified
|
|
@@ -94,12 +96,18 @@ def initialize_agent(
|
|
| 94 |
# Set up checkpointing for conversation state
|
| 95 |
checkpointer = MemorySaver()
|
| 96 |
|
| 97 |
-
#
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
# Create the agent with the specified model, tools, and configuration
|
| 101 |
agent = Agent(
|
| 102 |
-
|
| 103 |
tools=list(tools_dict.values()),
|
| 104 |
log_tools=True,
|
| 105 |
log_dir="logs",
|
|
@@ -118,20 +126,21 @@ if __name__ == "__main__":
|
|
| 118 |
"""
|
| 119 |
print("Starting server...")
|
| 120 |
|
| 121 |
-
#
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
# "DicomProcessorTool", # For processing DICOM medical image files
|
| 127 |
-
# "
|
|
|
|
| 128 |
# "ChestXRaySegmentationTool", # For segmenting anatomical regions in chest X-rays
|
| 129 |
# "ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
| 130 |
# "XRayVQATool", # For visual question answering on X-rays
|
| 131 |
# "LlavaMedTool", # For multimodal medical image understanding
|
| 132 |
# "XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 133 |
# "ChestXRayGeneratorTool", # For generating synthetic chest X-rays
|
| 134 |
-
"MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 135 |
]
|
| 136 |
|
| 137 |
# Configure the Retrieval Augmented Generation (RAG) system
|
|
@@ -147,26 +156,28 @@ if __name__ == "__main__":
|
|
| 147 |
use_medrag_textbooks=True, # Set to True if you want to use the MedRAG textbooks dataset
|
| 148 |
)
|
| 149 |
|
| 150 |
-
# Prepare
|
| 151 |
-
|
| 152 |
-
if api_key := os.getenv("OPENAI_API_KEY"):
|
| 153 |
-
openai_kwargs["api_key"] = api_key
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
# Initialize the agent with all configured components
|
| 159 |
agent, tools_dict = initialize_agent(
|
| 160 |
-
prompt_file="medrax/docs/system_prompts.txt",
|
| 161 |
-
tools_to_use=
|
| 162 |
-
model_dir="/model-weights",
|
| 163 |
temp_dir="temp", # Change this to the path of the temporary directory
|
| 164 |
-
device="
|
| 165 |
-
model="gpt-
|
| 166 |
temperature=0.7,
|
| 167 |
top_p=0.95,
|
|
|
|
| 168 |
rag_config=rag_config,
|
| 169 |
-
openai_kwargs=openai_kwargs,
|
| 170 |
)
|
| 171 |
|
| 172 |
# Create and launch the web interface
|
|
|
|
| 17 |
|
| 18 |
from langgraph.checkpoint.memory import MemorySaver
|
| 19 |
from langchain_openai import ChatOpenAI
|
| 20 |
+
from medrax.models import ModelFactory
|
| 21 |
|
| 22 |
from interface import create_demo
|
| 23 |
from medrax.agent import *
|
|
|
|
| 38 |
model_dir: str = "/model-weights",
|
| 39 |
temp_dir: str = "temp",
|
| 40 |
device: str = "cpu",
|
| 41 |
+
model: str = "gpt-4.1-2025-04-14",
|
| 42 |
temperature: float = 0.7,
|
| 43 |
top_p: float = 0.95,
|
| 44 |
rag_config: Optional[RAGConfig] = None,
|
| 45 |
+
model_kwargs: Dict[str, Any] = {},
|
| 46 |
+
):
|
| 47 |
"""Initialize the MedRAX agent with specified tools and configuration.
|
| 48 |
|
| 49 |
Args:
|
|
|
|
| 52 |
model_dir (str, optional): Directory containing model weights. Defaults to "/model-weights".
|
| 53 |
temp_dir (str, optional): Directory for temporary files. Defaults to "temp".
|
| 54 |
device (str, optional): Device to run models on. Defaults to "cuda".
|
| 55 |
+
model (str, optional): Model to use. Defaults to "gpt-4o".
|
| 56 |
temperature (float, optional): Temperature for the model. Defaults to 0.7.
|
| 57 |
top_p (float, optional): Top P for the model. Defaults to 0.95.
|
| 58 |
rag_config (RAGConfig, optional): Configuration for the RAG tool. Defaults to None.
|
| 59 |
+
model_kwargs (dict, optional): Additional keyword arguments for model.
|
| 60 |
|
| 61 |
Returns:
|
| 62 |
Tuple[Agent, Dict[str, BaseTool]]: Initialized agent and dictionary of tool instances
|
|
|
|
| 65 |
prompts = load_prompts_from_file(prompt_file)
|
| 66 |
prompt = prompts["MEDICAL_ASSISTANT"]
|
| 67 |
|
| 68 |
+
all_tools = {
|
| 69 |
+
"TorchXRayVisionClassifierTool": lambda: TorchXRayVisionClassifierTool(device=device),
|
| 70 |
+
"ArcPlusClassifierTool": lambda: ArcPlusClassifierTool(cache_dir=model_dir, device=device),
|
| 71 |
"ChestXRaySegmentationTool": lambda: ChestXRaySegmentationTool(device=device),
|
| 72 |
"LlavaMedTool": lambda: LlavaMedTool(cache_dir=model_dir, device=device, load_in_8bit=True),
|
| 73 |
"XRayVQATool": lambda: XRayVQATool(cache_dir=model_dir, device=device),
|
|
|
|
| 83 |
"ImageVisualizerTool": lambda: ImageVisualizerTool(),
|
| 84 |
"DicomProcessorTool": lambda: DicomProcessorTool(temp_dir=temp_dir),
|
| 85 |
"MedicalRAGTool": lambda: RAGTool(config=rag_config),
|
| 86 |
+
"WebBrowserTool": lambda: WebBrowserTool(),
|
| 87 |
}
|
| 88 |
|
| 89 |
# Initialize only selected tools or all if none specified
|
|
|
|
| 96 |
# Set up checkpointing for conversation state
|
| 97 |
checkpointer = MemorySaver()
|
| 98 |
|
| 99 |
+
# Create the language model using the factory
|
| 100 |
+
try:
|
| 101 |
+
llm = ModelFactory.create_model(
|
| 102 |
+
model_name=model, temperature=temperature, top_p=top_p, **model_kwargs
|
| 103 |
+
)
|
| 104 |
+
except ValueError as e:
|
| 105 |
+
print(f"Error creating language model: {e}")
|
| 106 |
+
print(f"Available model providers: {list(ModelFactory._model_providers.keys())}")
|
| 107 |
+
raise
|
| 108 |
|
|
|
|
| 109 |
agent = Agent(
|
| 110 |
+
llm,
|
| 111 |
tools=list(tools_dict.values()),
|
| 112 |
log_tools=True,
|
| 113 |
log_dir="logs",
|
|
|
|
| 126 |
"""
|
| 127 |
print("Starting server...")
|
| 128 |
|
| 129 |
+
# Example: initialize with only specific tools
|
| 130 |
+
# Here three tools are commented out, you can uncomment them to use them
|
| 131 |
+
selected_tools = [
|
| 132 |
+
"ImageVisualizerTool", # For displaying images in the UI
|
| 133 |
+
"WebBrowserTool", # For web browsing and search capabilities
|
| 134 |
# "DicomProcessorTool", # For processing DICOM medical image files
|
| 135 |
+
# "TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
|
| 136 |
+
# "ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
|
| 137 |
# "ChestXRaySegmentationTool", # For segmenting anatomical regions in chest X-rays
|
| 138 |
# "ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
| 139 |
# "XRayVQATool", # For visual question answering on X-rays
|
| 140 |
# "LlavaMedTool", # For multimodal medical image understanding
|
| 141 |
# "XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 142 |
# "ChestXRayGeneratorTool", # For generating synthetic chest X-rays
|
| 143 |
+
# "MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 144 |
]
|
| 145 |
|
| 146 |
# Configure the Retrieval Augmented Generation (RAG) system
|
|
|
|
| 156 |
use_medrag_textbooks=True, # Set to True if you want to use the MedRAG textbooks dataset
|
| 157 |
)
|
| 158 |
|
| 159 |
+
# Prepare any additional model-specific kwargs
|
| 160 |
+
model_kwargs = {}
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
# Set up API keys for the web browser tool
|
| 163 |
+
# You'll need to set these environment variables:
|
| 164 |
+
# - GOOGLE_SEARCH_API_KEY: Your Google Custom Search API key
|
| 165 |
+
# - GOOGLE_SEARCH_ENGINE_ID: Your Google Custom Search Engine ID
|
| 166 |
+
# - COHERE_API_KEY: Your Cohere API key
|
| 167 |
+
# - OPENAI_API_KEY: Your OpenAI API key
|
| 168 |
+
# - PINECONE_API_KEY: Your Pinecone API key
|
| 169 |
|
|
|
|
| 170 |
agent, tools_dict = initialize_agent(
|
| 171 |
+
prompt_file="medrax/docs/system_prompts.txt",
|
| 172 |
+
tools_to_use=selected_tools,
|
| 173 |
+
model_dir="/model-weights",
|
| 174 |
temp_dir="temp", # Change this to the path of the temporary directory
|
| 175 |
+
device="cuda",
|
| 176 |
+
model="gpt-4.1-2025-04-14", # Change this to the model you want to use, e.g. gpt-4.1-2025-04-14, gemini-2.5-pro
|
| 177 |
temperature=0.7,
|
| 178 |
top_p=0.95,
|
| 179 |
+
model_kwargs=model_kwargs,
|
| 180 |
rag_config=rag_config,
|
|
|
|
| 181 |
)
|
| 182 |
|
| 183 |
# Create and launch the web interface
|
medrax/models/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Model module for MedRAX."""
|
| 2 |
+
|
| 3 |
+
from .model_factory import ModelFactory
|
| 4 |
+
|
| 5 |
+
__all__ = ["ModelFactory"]
|
medrax/models/model_factory.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Factory for creating language model instances based on model name."""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from typing import Dict, Any, Type
|
| 5 |
+
|
| 6 |
+
from langchain_core.language_models import BaseLanguageModel
|
| 7 |
+
from langchain_openai import ChatOpenAI
|
| 8 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ModelFactory:
|
| 12 |
+
"""Factory for creating language model instances based on model name.
|
| 13 |
+
|
| 14 |
+
This class implements a registry of language model providers and provides
|
| 15 |
+
methods to create appropriate language model instances based on the model name.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
# Registry of model providers
|
| 19 |
+
_model_providers = {
|
| 20 |
+
"gpt": {
|
| 21 |
+
"class": ChatOpenAI,
|
| 22 |
+
"env_key": "OPENAI_API_KEY",
|
| 23 |
+
"base_url_key": "OPENAI_BASE_URL"
|
| 24 |
+
},
|
| 25 |
+
"chatgpt": {
|
| 26 |
+
"class": ChatOpenAI,
|
| 27 |
+
"env_key": "OPENAI_API_KEY",
|
| 28 |
+
"base_url_key": "OPENAI_BASE_URL"
|
| 29 |
+
},
|
| 30 |
+
"gemini": {
|
| 31 |
+
"class": ChatGoogleGenerativeAI,
|
| 32 |
+
"env_key": "GOOGLE_API_KEY"
|
| 33 |
+
},
|
| 34 |
+
"openrouter": {
|
| 35 |
+
"class": ChatOpenAI, # OpenRouter uses OpenAI-compatible interface
|
| 36 |
+
"env_key": "OPENROUTER_API_KEY",
|
| 37 |
+
"base_url_key": "OPENROUTER_BASE_URL",
|
| 38 |
+
"default_base_url": "https://openrouter.ai/api/v1"
|
| 39 |
+
},
|
| 40 |
+
# Add more providers with default configurations here
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
@classmethod
|
| 44 |
+
def register_provider(cls, prefix: str, model_class: Type[BaseLanguageModel],
|
| 45 |
+
env_key: str, **kwargs) -> None:
|
| 46 |
+
"""Register a new model provider.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
prefix (str): The prefix used to identify this model provider (e.g., 'gpt', 'gemini')
|
| 50 |
+
model_class (Type[BaseLanguageModel]): The LangChain model class to use
|
| 51 |
+
env_key (str): The environment variable name for the API key
|
| 52 |
+
**kwargs: Additional provider-specific configuration
|
| 53 |
+
"""
|
| 54 |
+
cls._model_providers[prefix] = {
|
| 55 |
+
"class": model_class,
|
| 56 |
+
"env_key": env_key,
|
| 57 |
+
**kwargs
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
@classmethod
|
| 61 |
+
def create_model(cls, model_name: str, temperature: float = 0.7,
|
| 62 |
+
top_p: float = 0.95, **kwargs) -> BaseLanguageModel:
|
| 63 |
+
"""Create and return an instance of the appropriate language model.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
model_name (str): Name of the model to create (e.g., 'gpt-4o', 'gemini-2.5-pro')
|
| 67 |
+
temperature (float, optional): Temperature parameter. Defaults to 0.7.
|
| 68 |
+
top_p (float, optional): Top-p sampling parameter. Defaults to 0.95.
|
| 69 |
+
**kwargs: Additional model-specific parameters
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
BaseLanguageModel: An initialized language model instance
|
| 73 |
+
|
| 74 |
+
Raises:
|
| 75 |
+
ValueError: If no provider is found for the given model name
|
| 76 |
+
ValueError: If the required API key is missing
|
| 77 |
+
"""
|
| 78 |
+
# Find the matching provider based on model name prefix
|
| 79 |
+
provider_prefix = next(
|
| 80 |
+
(prefix for prefix in cls._model_providers if model_name.startswith(prefix)),
|
| 81 |
+
None
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
if not provider_prefix:
|
| 85 |
+
raise ValueError(
|
| 86 |
+
f"No provider found for model: {model_name}. "
|
| 87 |
+
f"Registered providers are for: {list(cls._model_providers.keys())}"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
provider = cls._model_providers[provider_prefix]
|
| 91 |
+
model_class = provider["class"]
|
| 92 |
+
env_key = provider["env_key"]
|
| 93 |
+
|
| 94 |
+
# Set up provider-specific kwargs
|
| 95 |
+
provider_kwargs = {}
|
| 96 |
+
|
| 97 |
+
# Handle API key
|
| 98 |
+
if env_key in os.environ:
|
| 99 |
+
provider_kwargs["api_key"] = os.environ[env_key]
|
| 100 |
+
else:
|
| 101 |
+
# Log warning but don't fail - the model class might handle missing API keys differently
|
| 102 |
+
print(f"Warning: Environment variable {env_key} not found. Authentication may fail.")
|
| 103 |
+
|
| 104 |
+
# Check for base_url if applicable
|
| 105 |
+
if "base_url_key" in provider:
|
| 106 |
+
if provider["base_url_key"] in os.environ:
|
| 107 |
+
provider_kwargs["base_url"] = os.environ[provider["base_url_key"]]
|
| 108 |
+
elif "default_base_url" in provider:
|
| 109 |
+
provider_kwargs["base_url"] = provider["default_base_url"]
|
| 110 |
+
|
| 111 |
+
# Merge with any additional provider-specific settings from the registry
|
| 112 |
+
for k, v in provider.items():
|
| 113 |
+
if k not in ["class", "env_key", "base_url_key", "default_base_url"]:
|
| 114 |
+
provider_kwargs[k] = v
|
| 115 |
+
|
| 116 |
+
# Strip the provider prefix from the model name
|
| 117 |
+
# For example, 'openrouter-anthropic/claude-sonnet-4' becomes 'anthropic/claude-sonnet-4'
|
| 118 |
+
actual_model_name = model_name
|
| 119 |
+
if model_name.startswith(f"{provider_prefix}-"):
|
| 120 |
+
actual_model_name = model_name[len(provider_prefix)+1:]
|
| 121 |
+
|
| 122 |
+
# Create and return the model instance
|
| 123 |
+
return model_class(
|
| 124 |
+
model=actual_model_name,
|
| 125 |
+
temperature=temperature,
|
| 126 |
+
top_p=top_p,
|
| 127 |
+
**provider_kwargs,
|
| 128 |
+
**kwargs
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
@classmethod
|
| 132 |
+
def list_providers(cls) -> Dict[str, Dict[str, Any]]:
|
| 133 |
+
"""List all registered model providers.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
Dict[str, Dict[str, Any]]: Dictionary of registered providers and their configurations
|
| 137 |
+
"""
|
| 138 |
+
# Return a copy to prevent accidental modification
|
| 139 |
+
return {k: {kk: vv for kk, vv in v.items() if kk != "class"}
|
| 140 |
+
for k, v in cls._model_providers.items()}
|
medrax/tools/__init__.py
CHANGED
|
@@ -9,4 +9,5 @@ from .grounding import *
|
|
| 9 |
from .generation import *
|
| 10 |
from .dicom import *
|
| 11 |
from .utils import *
|
| 12 |
-
from .rag import *
|
|
|
|
|
|
| 9 |
from .generation import *
|
| 10 |
from .dicom import *
|
| 11 |
from .utils import *
|
| 12 |
+
from .rag import *
|
| 13 |
+
from .web_browser import *
|
medrax/tools/classification/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Classification tools for chest X-ray analysis."""
|
| 2 |
+
|
| 3 |
+
from .torchxrayvision import TorchXRayVisionClassifierTool, TorchXRayVisionInput
|
| 4 |
+
from .arcplus import ArcPlusClassifierTool, ArcPlusInput
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"TorchXRayVisionClassifierTool",
|
| 8 |
+
"TorchXRayVisionInput",
|
| 9 |
+
"ArcPlusClassifierTool",
|
| 10 |
+
"ArcPlusInput"
|
| 11 |
+
]
|
medrax/tools/classification/arcplus.py
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import ClassVar, Dict, List, Optional, Tuple, Type
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from pydantic import BaseModel, Field
|
| 10 |
+
from timm.models.swin_transformer import SwinTransformer
|
| 11 |
+
|
| 12 |
+
from langchain_core.callbacks import (
|
| 13 |
+
AsyncCallbackManagerForToolRun,
|
| 14 |
+
CallbackManagerForToolRun,
|
| 15 |
+
)
|
| 16 |
+
from langchain_core.tools import BaseTool
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class OmniSwinTransformer(SwinTransformer):
|
| 20 |
+
"""OmniSwinTransformer with multiple classification heads and optional projector."""
|
| 21 |
+
|
| 22 |
+
def __init__(self, num_classes_list, projector_features=None, use_mlp=False, *args, **kwargs):
|
| 23 |
+
super().__init__(*args, **kwargs)
|
| 24 |
+
assert num_classes_list is not None
|
| 25 |
+
|
| 26 |
+
self.projector = None
|
| 27 |
+
if projector_features:
|
| 28 |
+
encoder_features = self.num_features
|
| 29 |
+
self.num_features = projector_features
|
| 30 |
+
if use_mlp:
|
| 31 |
+
self.projector = nn.Sequential(
|
| 32 |
+
nn.Linear(encoder_features, self.num_features),
|
| 33 |
+
nn.ReLU(inplace=True),
|
| 34 |
+
nn.Linear(self.num_features, self.num_features),
|
| 35 |
+
)
|
| 36 |
+
else:
|
| 37 |
+
self.projector = nn.Linear(encoder_features, self.num_features)
|
| 38 |
+
|
| 39 |
+
self.omni_heads = []
|
| 40 |
+
for num_classes in num_classes_list:
|
| 41 |
+
self.omni_heads.append(
|
| 42 |
+
nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 43 |
+
)
|
| 44 |
+
self.omni_heads = nn.ModuleList(self.omni_heads)
|
| 45 |
+
|
| 46 |
+
def forward(self, x, head_n=None):
|
| 47 |
+
x = self.forward_features(x)
|
| 48 |
+
if self.projector:
|
| 49 |
+
x = self.projector(x)
|
| 50 |
+
if head_n is not None:
|
| 51 |
+
return x, self.omni_heads[head_n](x)
|
| 52 |
+
else:
|
| 53 |
+
return [head(x) for head in self.omni_heads]
|
| 54 |
+
|
| 55 |
+
def generate_embeddings(self, x, after_proj=True):
|
| 56 |
+
x = self.forward_features(x)
|
| 57 |
+
if after_proj and self.projector:
|
| 58 |
+
x = self.projector(x)
|
| 59 |
+
return x
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class ArcPlusInput(BaseModel):
|
| 63 |
+
"""Input for ArcPlus chest X-ray analysis tool. Only supports JPG or PNG images."""
|
| 64 |
+
|
| 65 |
+
image_path: str = Field(
|
| 66 |
+
..., description="Path to the radiology image file, only supports JPG or PNG images"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class ArcPlusClassifierTool(BaseTool):
|
| 71 |
+
"""Tool that classifies chest X-ray images using the ArcPlus OmniSwinTransformer model.
|
| 72 |
+
|
| 73 |
+
This tool uses a pre-trained OmniSwinTransformer model (ArcPlus) to analyze chest X-ray images
|
| 74 |
+
and predict the likelihood of various pathologies across multiple medical datasets. The model
|
| 75 |
+
employs a Swin Transformer architecture with multiple classification heads, each specialized
|
| 76 |
+
for different medical datasets and conditions.
|
| 77 |
+
|
| 78 |
+
The ArcPlus model is trained on 6 different medical datasets:
|
| 79 |
+
- MIMIC-CXR: 14 pathologies including common chest conditions
|
| 80 |
+
- CheXpert: 14 pathologies with standardized labeling
|
| 81 |
+
- NIH ChestX-ray14: 14 pathologies from large-scale dataset
|
| 82 |
+
- RSNA: 3 classes for pneumonia detection
|
| 83 |
+
- VinDr-CXR: 6 categories including tuberculosis and lung tumors
|
| 84 |
+
- Shenzhen: 1 class for tuberculosis detection
|
| 85 |
+
|
| 86 |
+
Key Features:
|
| 87 |
+
- Multi-head architecture with 6 specialized classification heads
|
| 88 |
+
- 768x768 input resolution for high-detail analysis
|
| 89 |
+
- Projector layer with 1376 features for enhanced representation
|
| 90 |
+
- Sigmoid activation for multi-label classification
|
| 91 |
+
- Covers 52+ distinct pathology categories across datasets
|
| 92 |
+
|
| 93 |
+
The model outputs probabilities (0 to 1) for each condition, with higher values
|
| 94 |
+
indicating higher likelihood of the pathology being present in the image.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
name: str = "arcplus_classifier"
|
| 98 |
+
description: str = (
|
| 99 |
+
"Advanced chest X-ray classification tool using ArcPlus OmniSwinTransformer with multi-dataset training. "
|
| 100 |
+
"Analyzes chest X-ray images and provides probability predictions for 52+ pathologies across 6 medical datasets. "
|
| 101 |
+
"Input: Path to chest X-ray image file (JPG/PNG). "
|
| 102 |
+
"Output: Dictionary mapping pathology names to probabilities (0-1). "
|
| 103 |
+
"Features: Multi-head architecture, 768px resolution, projector layer, specialized for medical imaging. "
|
| 104 |
+
"Pathologies include: Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, "
|
| 105 |
+
"Fracture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneumonia, Pneumothorax, Mass, Nodule, "
|
| 106 |
+
"Emphysema, Fibrosis, PE, Lung Tumor, Tuberculosis, and many more across MIMIC, CheXpert, NIH, "
|
| 107 |
+
"RSNA, VinDr, and Shenzhen datasets. Higher probabilities indicate higher likelihood of condition presence."
|
| 108 |
+
)
|
| 109 |
+
args_schema: Type[BaseModel] = ArcPlusInput
|
| 110 |
+
model: OmniSwinTransformer = None
|
| 111 |
+
device: Optional[str] = "cuda"
|
| 112 |
+
normalize: transforms.Normalize = None
|
| 113 |
+
disease_list: List[str] = None
|
| 114 |
+
num_classes_list: List[int] = None
|
| 115 |
+
|
| 116 |
+
# Disease mappings from the analysis
|
| 117 |
+
mimic_diseases: ClassVar[List[str]] = [
|
| 118 |
+
"Atelectasis",
|
| 119 |
+
"Cardiomegaly",
|
| 120 |
+
"Consolidation",
|
| 121 |
+
"Edema",
|
| 122 |
+
"Enlarged Cardiomediastinum",
|
| 123 |
+
"Fracture",
|
| 124 |
+
"Lung Lesion",
|
| 125 |
+
"Lung Opacity",
|
| 126 |
+
"No Finding",
|
| 127 |
+
"Pleural Effusion",
|
| 128 |
+
"Pleural Other",
|
| 129 |
+
"Pneumonia",
|
| 130 |
+
"Pneumothorax",
|
| 131 |
+
"Support Devices",
|
| 132 |
+
]
|
| 133 |
+
chexpert_diseases: ClassVar[List[str]] = [
|
| 134 |
+
"No Finding",
|
| 135 |
+
"Enlarged Cardiomediastinum",
|
| 136 |
+
"Cardiomegaly",
|
| 137 |
+
"Lung Opacity",
|
| 138 |
+
"Lung Lesion",
|
| 139 |
+
"Edema",
|
| 140 |
+
"Consolidation",
|
| 141 |
+
"Pneumonia",
|
| 142 |
+
"Atelectasis",
|
| 143 |
+
"Pneumothorax",
|
| 144 |
+
"Pleural Effusion",
|
| 145 |
+
"Pleural Other",
|
| 146 |
+
"Fracture",
|
| 147 |
+
"Support Devices",
|
| 148 |
+
]
|
| 149 |
+
nih14_diseases: ClassVar[List[str]] = [
|
| 150 |
+
"Atelectasis",
|
| 151 |
+
"Cardiomegaly",
|
| 152 |
+
"Effusion",
|
| 153 |
+
"Infiltration",
|
| 154 |
+
"Mass",
|
| 155 |
+
"Nodule",
|
| 156 |
+
"Pneumonia",
|
| 157 |
+
"Pneumothorax",
|
| 158 |
+
"Consolidation",
|
| 159 |
+
"Edema",
|
| 160 |
+
"Emphysema",
|
| 161 |
+
"Fibrosis",
|
| 162 |
+
"Pleural_Thickening",
|
| 163 |
+
"Hernia",
|
| 164 |
+
]
|
| 165 |
+
rsna_diseases: ClassVar[List[str]] = ["No Lung Opacity/Not Normal", "Normal", "Lung Opacity"]
|
| 166 |
+
vindr_diseases: ClassVar[List[str]] = [
|
| 167 |
+
"PE",
|
| 168 |
+
"Lung tumor",
|
| 169 |
+
"Pneumonia",
|
| 170 |
+
"Tuberculosis",
|
| 171 |
+
"Other diseases",
|
| 172 |
+
"No finding",
|
| 173 |
+
]
|
| 174 |
+
shenzhen_diseases: ClassVar[List[str]] = ["TB"]
|
| 175 |
+
|
| 176 |
+
def __init__(self, cache_dir: str = None, device: Optional[str] = "cuda"):
|
| 177 |
+
"""Initialize the ArcPlus Classifier Tool.
|
| 178 |
+
|
| 179 |
+
Args:
|
| 180 |
+
cache_dir (str, optional): Directory containing the pre-trained ArcPlus model checkpoint.
|
| 181 |
+
The tool will automatically look for 'Ark6_swinLarge768_ep50.pth.tar' in this directory.
|
| 182 |
+
If None, model will be initialized with random weights (not recommended for inference).
|
| 183 |
+
Default: None.
|
| 184 |
+
device (str, optional): Device to run the model on ('cuda' for GPU, 'cpu' for CPU).
|
| 185 |
+
GPU is recommended for better performance. Default: "cuda".
|
| 186 |
+
|
| 187 |
+
Model Architecture Details:
|
| 188 |
+
- OmniSwinTransformer with 6 classification heads
|
| 189 |
+
- Input resolution: 768x768 pixels
|
| 190 |
+
- Projector features: 1376 dimensions
|
| 191 |
+
- Multi-head configuration: [14, 14, 14, 3, 6, 1] classes per head
|
| 192 |
+
- Total pathologies: 52+ across 6 medical datasets
|
| 193 |
+
- Preprocessing: ImageNet normalization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 194 |
+
|
| 195 |
+
Raises:
|
| 196 |
+
FileNotFoundError: If cache_dir is provided but model file doesn't exist.
|
| 197 |
+
RuntimeError: If model loading fails or device is unavailable.
|
| 198 |
+
"""
|
| 199 |
+
super().__init__()
|
| 200 |
+
|
| 201 |
+
# Create combined disease list from all supported datasets
|
| 202 |
+
self.disease_list = (
|
| 203 |
+
self.mimic_diseases
|
| 204 |
+
+ self.chexpert_diseases
|
| 205 |
+
+ self.nih14_diseases
|
| 206 |
+
+ self.rsna_diseases
|
| 207 |
+
+ self.vindr_diseases
|
| 208 |
+
+ self.shenzhen_diseases
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Multi-head configuration: [MIMIC, CheXpert, NIH, RSNA, VinDr, Shenzhen]
|
| 212 |
+
self.num_classes_list = [14, 14, 14, 3, 6, 1]
|
| 213 |
+
|
| 214 |
+
# Initialize the OmniSwinTransformer model with ArcPlus architecture
|
| 215 |
+
self.model = OmniSwinTransformer(
|
| 216 |
+
num_classes_list=self.num_classes_list,
|
| 217 |
+
projector_features=1376, # Enhanced feature representation
|
| 218 |
+
use_mlp=False, # Linear projector (not MLP)
|
| 219 |
+
img_size=768, # High-resolution input
|
| 220 |
+
patch_size=4,
|
| 221 |
+
window_size=12,
|
| 222 |
+
embed_dim=192,
|
| 223 |
+
depths=(2, 2, 18, 2), # Swin-Large configuration
|
| 224 |
+
num_heads=(6, 12, 24, 48),
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# Load pre-trained weights if provided
|
| 228 |
+
if cache_dir:
|
| 229 |
+
model_path = os.path.join(cache_dir, "Ark6_swinLarge768_ep50.pth.tar")
|
| 230 |
+
self._load_checkpoint(model_path)
|
| 231 |
+
|
| 232 |
+
self.model.eval()
|
| 233 |
+
self.device = torch.device(device) if device else "cuda"
|
| 234 |
+
self.model = self.model.to(self.device)
|
| 235 |
+
|
| 236 |
+
# ImageNet normalization parameters for optimal performance
|
| 237 |
+
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 238 |
+
|
| 239 |
+
def _load_checkpoint(self, model_path: str) -> None:
|
| 240 |
+
"""
|
| 241 |
+
Load the ArcPlus model checkpoint.
|
| 242 |
+
|
| 243 |
+
Args:
|
| 244 |
+
model_path (str): Path to the model checkpoint file.
|
| 245 |
+
"""
|
| 246 |
+
# Load the checkpoint (set weights_only=False for PyTorch 2.6+ compatibility)
|
| 247 |
+
checkpoint = torch.load(model_path, map_location=torch.device("cpu"), weights_only=False)
|
| 248 |
+
state_dict = checkpoint["teacher"] # Use 'teacher' key
|
| 249 |
+
|
| 250 |
+
# Remove "module." prefix if present (improved logic from example)
|
| 251 |
+
if any([True if "module." in k else False for k in state_dict.keys()]):
|
| 252 |
+
state_dict = {
|
| 253 |
+
k.replace("module.", ""): v
|
| 254 |
+
for k, v in state_dict.items()
|
| 255 |
+
if k.startswith("module.")
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
# Load the model weights
|
| 259 |
+
msg = self.model.load_state_dict(state_dict, strict=False)
|
| 260 |
+
|
| 261 |
+
def _process_image(self, image_path: str) -> torch.Tensor:
|
| 262 |
+
"""
|
| 263 |
+
Process the input chest X-ray image for model inference.
|
| 264 |
+
|
| 265 |
+
This method loads the image, applies necessary transformations,
|
| 266 |
+
and prepares it as a torch.Tensor for model input.
|
| 267 |
+
|
| 268 |
+
Args:
|
| 269 |
+
image_path (str): The file path to the chest X-ray image.
|
| 270 |
+
|
| 271 |
+
Returns:
|
| 272 |
+
torch.Tensor: A processed image tensor ready for model inference.
|
| 273 |
+
|
| 274 |
+
Raises:
|
| 275 |
+
FileNotFoundError: If the specified image file does not exist.
|
| 276 |
+
ValueError: If the image cannot be properly loaded or processed.
|
| 277 |
+
"""
|
| 278 |
+
try:
|
| 279 |
+
# Load and preprocess image following the example pattern
|
| 280 |
+
image = Image.open(image_path).convert("RGB").resize((768, 768))
|
| 281 |
+
|
| 282 |
+
# Convert to numpy array and normalize to [0, 1]
|
| 283 |
+
image_array = np.array(image) / 255.0
|
| 284 |
+
|
| 285 |
+
# Apply ImageNet normalization
|
| 286 |
+
image_tensor = torch.from_numpy(image_array).float()
|
| 287 |
+
image_tensor = image_tensor.permute(2, 0, 1) # HWC to CHW
|
| 288 |
+
image_tensor = self.normalize(image_tensor)
|
| 289 |
+
|
| 290 |
+
# Add batch dimension and move to device
|
| 291 |
+
image_tensor = image_tensor.unsqueeze(0).to(self.device)
|
| 292 |
+
|
| 293 |
+
return image_tensor
|
| 294 |
+
|
| 295 |
+
except Exception as e:
|
| 296 |
+
raise ValueError(f"Error processing image {image_path}: {str(e)}")
|
| 297 |
+
|
| 298 |
+
def _run(
|
| 299 |
+
self,
|
| 300 |
+
image_path: str,
|
| 301 |
+
run_manager: Optional[CallbackManagerForToolRun] = None,
|
| 302 |
+
) -> Tuple[Dict[str, float], Dict]:
|
| 303 |
+
"""Classify the chest X-ray image using ArcPlus SwinTransformer.
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
image_path (str): The path to the chest X-ray image file.
|
| 307 |
+
run_manager (Optional[CallbackManagerForToolRun]): The callback manager for the tool run.
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
Tuple[Dict[str, float], Dict]: A tuple containing the classification results
|
| 311 |
+
(pathologies and their probabilities from 0 to 1)
|
| 312 |
+
and any additional metadata.
|
| 313 |
+
|
| 314 |
+
Raises:
|
| 315 |
+
Exception: If there's an error processing the image or during classification.
|
| 316 |
+
"""
|
| 317 |
+
try:
|
| 318 |
+
# Process the image
|
| 319 |
+
image_tensor = self._process_image(image_path)
|
| 320 |
+
|
| 321 |
+
# Run model inference
|
| 322 |
+
with torch.no_grad():
|
| 323 |
+
pre_logits = self.model(image_tensor)
|
| 324 |
+
|
| 325 |
+
# Apply sigmoid to each output head (as seen in example)
|
| 326 |
+
preds = [torch.sigmoid(out) for out in pre_logits]
|
| 327 |
+
|
| 328 |
+
# Concatenate all predictions into single tensor
|
| 329 |
+
preds = torch.cat(preds, dim=1)
|
| 330 |
+
|
| 331 |
+
# Convert to numpy
|
| 332 |
+
predictions = preds.cpu().numpy().flatten()
|
| 333 |
+
|
| 334 |
+
# Map predictions to disease names
|
| 335 |
+
if len(predictions) != len(self.disease_list):
|
| 336 |
+
print(
|
| 337 |
+
f"Warning: Expected {len(self.disease_list)} predictions, got {len(predictions)}"
|
| 338 |
+
)
|
| 339 |
+
# Pad or truncate as needed
|
| 340 |
+
if len(predictions) < len(self.disease_list):
|
| 341 |
+
predictions = np.pad(
|
| 342 |
+
predictions, (0, len(self.disease_list) - len(predictions))
|
| 343 |
+
)
|
| 344 |
+
else:
|
| 345 |
+
predictions = predictions[: len(self.disease_list)]
|
| 346 |
+
|
| 347 |
+
# Create output dictionary mapping disease names to probabilities
|
| 348 |
+
output = dict(zip(self.disease_list, predictions.astype(float)))
|
| 349 |
+
|
| 350 |
+
metadata = {
|
| 351 |
+
"image_path": image_path,
|
| 352 |
+
"model": "ArcPlus OmniSwinTransformer",
|
| 353 |
+
"analysis_status": "completed",
|
| 354 |
+
"num_predictions": len(predictions),
|
| 355 |
+
"num_heads": len(self.num_classes_list),
|
| 356 |
+
"projector_features": 1376,
|
| 357 |
+
"note": "Probabilities range from 0 to 1, with higher values indicating higher likelihood of the condition.",
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
return output, metadata
|
| 361 |
+
|
| 362 |
+
except Exception as e:
|
| 363 |
+
return {"error": str(e)}, {
|
| 364 |
+
"image_path": image_path,
|
| 365 |
+
"analysis_status": "failed",
|
| 366 |
+
"error_details": str(e),
|
| 367 |
+
}
|
| 368 |
+
|
| 369 |
+
async def _arun(
|
| 370 |
+
self,
|
| 371 |
+
image_path: str,
|
| 372 |
+
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 373 |
+
) -> Tuple[Dict[str, float], Dict]:
|
| 374 |
+
"""Asynchronously classify the chest X-ray image using ArcPlus SwinTransformer.
|
| 375 |
+
|
| 376 |
+
This method currently calls the synchronous version, as the model inference
|
| 377 |
+
is not inherently asynchronous. For true asynchronous behavior, consider
|
| 378 |
+
using a separate thread or process.
|
| 379 |
+
|
| 380 |
+
Args:
|
| 381 |
+
image_path (str): The path to the chest X-ray image file.
|
| 382 |
+
run_manager (Optional[AsyncCallbackManagerForToolRun]): The async callback manager for the tool run.
|
| 383 |
+
|
| 384 |
+
Returns:
|
| 385 |
+
Tuple[Dict[str, float], Dict]: A tuple containing the classification results
|
| 386 |
+
(pathologies and their probabilities from 0 to 1)
|
| 387 |
+
and any additional metadata.
|
| 388 |
+
|
| 389 |
+
Raises:
|
| 390 |
+
Exception: If there's an error processing the image or during classification.
|
| 391 |
+
"""
|
| 392 |
+
return self._run(image_path)
|
medrax/tools/{classification.py → classification/torchxrayvision.py}
RENAMED
|
@@ -13,15 +13,15 @@ from langchain_core.callbacks import (
|
|
| 13 |
from langchain_core.tools import BaseTool
|
| 14 |
|
| 15 |
|
| 16 |
-
class
|
| 17 |
-
"""Input for chest X-ray analysis tools. Only supports JPG or PNG images."""
|
| 18 |
|
| 19 |
image_path: str = Field(
|
| 20 |
..., description="Path to the radiology image file, only supports JPG or PNG images"
|
| 21 |
)
|
| 22 |
|
| 23 |
|
| 24 |
-
class
|
| 25 |
"""Tool that classifies chest X-ray images for multiple pathologies.
|
| 26 |
|
| 27 |
This tool uses a pre-trained DenseNet model to analyze chest X-ray images and
|
|
@@ -35,9 +35,9 @@ class ChestXRayClassifierTool(BaseTool):
|
|
| 35 |
A higher value indicates a higher likelihood of the condition being present.
|
| 36 |
"""
|
| 37 |
|
| 38 |
-
name: str = "
|
| 39 |
description: str = (
|
| 40 |
-
"A tool that analyzes chest X-ray images and classifies them for 18 different pathologies. "
|
| 41 |
"Input should be the path to a chest X-ray image file. "
|
| 42 |
"Output is a dictionary of pathologies and their predicted probabilities (0 to 1). "
|
| 43 |
"Pathologies include: Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, "
|
|
@@ -45,7 +45,7 @@ class ChestXRayClassifierTool(BaseTool):
|
|
| 45 |
"Lung Opacity, Mass, Nodule, Pleural Thickening, Pneumonia, and Pneumothorax. "
|
| 46 |
"Higher values indicate a higher likelihood of the condition being present."
|
| 47 |
)
|
| 48 |
-
args_schema: Type[BaseModel] =
|
| 49 |
model: xrv.models.DenseNet = None
|
| 50 |
device: Optional[str] = "cuda"
|
| 51 |
transform: torchvision.transforms.Compose = None
|
|
|
|
| 13 |
from langchain_core.tools import BaseTool
|
| 14 |
|
| 15 |
|
| 16 |
+
class TorchXRayVisionInput(BaseModel):
|
| 17 |
+
"""Input for TorchXRayVision chest X-ray analysis tools. Only supports JPG or PNG images."""
|
| 18 |
|
| 19 |
image_path: str = Field(
|
| 20 |
..., description="Path to the radiology image file, only supports JPG or PNG images"
|
| 21 |
)
|
| 22 |
|
| 23 |
|
| 24 |
+
class TorchXRayVisionClassifierTool(BaseTool):
|
| 25 |
"""Tool that classifies chest X-ray images for multiple pathologies.
|
| 26 |
|
| 27 |
This tool uses a pre-trained DenseNet model to analyze chest X-ray images and
|
|
|
|
| 35 |
A higher value indicates a higher likelihood of the condition being present.
|
| 36 |
"""
|
| 37 |
|
| 38 |
+
name: str = "torchxrayvision_classifier"
|
| 39 |
description: str = (
|
| 40 |
+
"A tool that analyzes chest X-ray images and classifies them for 18 different pathologies using TorchXRayVision DenseNet. "
|
| 41 |
"Input should be the path to a chest X-ray image file. "
|
| 42 |
"Output is a dictionary of pathologies and their predicted probabilities (0 to 1). "
|
| 43 |
"Pathologies include: Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, "
|
|
|
|
| 45 |
"Lung Opacity, Mass, Nodule, Pleural Thickening, Pneumonia, and Pneumothorax. "
|
| 46 |
"Higher values indicate a higher likelihood of the condition being present."
|
| 47 |
)
|
| 48 |
+
args_schema: Type[BaseModel] = TorchXRayVisionInput
|
| 49 |
model: xrv.models.DenseNet = None
|
| 50 |
device: Optional[str] = "cuda"
|
| 51 |
transform: torchvision.transforms.Compose = None
|
medrax/tools/web_browser.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Web browser tool for MedRAX2.
|
| 2 |
+
|
| 3 |
+
This module implements a web browsing tool for MedRAX2, allowing the agent
|
| 4 |
+
to search the web, visit URLs, and extract information from web pages.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
+
import json
|
| 10 |
+
import time
|
| 11 |
+
from typing import Dict, Optional, Any, Type, Tuple
|
| 12 |
+
from urllib.parse import urlparse
|
| 13 |
+
|
| 14 |
+
import requests
|
| 15 |
+
from bs4 import BeautifulSoup
|
| 16 |
+
from langchain_core.tools import BaseTool
|
| 17 |
+
from pydantic import BaseModel, Field
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class WebBrowserSchema(BaseModel):
|
| 21 |
+
"""Schema for web browser tool."""
|
| 22 |
+
query: str = Field("", description="The search query (leave empty if visiting a URL)")
|
| 23 |
+
url: str = Field("", description="The URL to visit (leave empty if performing a search)")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class SearchQuerySchema(BaseModel):
|
| 27 |
+
"""Schema for web search queries."""
|
| 28 |
+
query: str = Field(..., description="The search query string")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class VisitUrlSchema(BaseModel):
|
| 32 |
+
"""Schema for URL visits."""
|
| 33 |
+
url: str = Field(..., description="The URL to visit")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class WebBrowserTool(BaseTool):
|
| 37 |
+
"""Tool for browsing the web, searching for information, and visiting URLs.
|
| 38 |
+
|
| 39 |
+
This tool provides the agent with internet browsing capabilities, including:
|
| 40 |
+
1. Performing web searches using a search engine API
|
| 41 |
+
2. Visiting specific URLs and extracting their content
|
| 42 |
+
3. Following links within pages
|
| 43 |
+
"""
|
| 44 |
+
name: str = "WebBrowserTool"
|
| 45 |
+
description: str = "Search the web for information or visit specific URLs to retrieve content"
|
| 46 |
+
search_api_key: Optional[str] = None
|
| 47 |
+
search_engine_id: Optional[str] = None
|
| 48 |
+
user_agent: str = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
| 49 |
+
max_results: int = 5
|
| 50 |
+
args_schema: Type[BaseModel] = WebBrowserSchema
|
| 51 |
+
|
| 52 |
+
def __init__(self, search_api_key: Optional[str] = None, search_engine_id: Optional[str] = None, **kwargs):
|
| 53 |
+
"""Initialize the web browser tool.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
search_api_key: Google Custom Search API key (optional)
|
| 57 |
+
search_engine_id: Google Custom Search Engine ID (optional)
|
| 58 |
+
**kwargs: Additional keyword arguments
|
| 59 |
+
"""
|
| 60 |
+
super().__init__(**kwargs)
|
| 61 |
+
# Try to get API keys from environment variables if not provided
|
| 62 |
+
self.search_api_key = search_api_key or os.environ.get("GOOGLE_SEARCH_API_KEY")
|
| 63 |
+
self.search_engine_id = search_engine_id or os.environ.get("GOOGLE_SEARCH_ENGINE_ID")
|
| 64 |
+
|
| 65 |
+
def search_web(self, query: str) -> Dict[str, Any]:
|
| 66 |
+
"""Search the web using Google Custom Search API.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
query: The search query string
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
Dict containing search results
|
| 73 |
+
"""
|
| 74 |
+
if not self.search_api_key or not self.search_engine_id:
|
| 75 |
+
return {
|
| 76 |
+
"error": "Search API key or engine ID not configured. Please set GOOGLE_SEARCH_API_KEY and GOOGLE_SEARCH_ENGINE_ID environment variables."
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
url = "https://www.googleapis.com/customsearch/v1"
|
| 80 |
+
params = {
|
| 81 |
+
"key": self.search_api_key,
|
| 82 |
+
"cx": self.search_engine_id,
|
| 83 |
+
"q": query,
|
| 84 |
+
"num": self.max_results
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
response = requests.get(url, params=params, timeout=10)
|
| 89 |
+
response.raise_for_status()
|
| 90 |
+
results = response.json()
|
| 91 |
+
|
| 92 |
+
if "items" not in results:
|
| 93 |
+
return {"results": [], "message": "No results found"}
|
| 94 |
+
|
| 95 |
+
formatted_results = []
|
| 96 |
+
for item in results["items"]:
|
| 97 |
+
formatted_results.append({
|
| 98 |
+
"title": item.get("title"),
|
| 99 |
+
"link": item.get("link"),
|
| 100 |
+
"snippet": item.get("snippet"),
|
| 101 |
+
"source": item.get("displayLink")
|
| 102 |
+
})
|
| 103 |
+
|
| 104 |
+
return {
|
| 105 |
+
"results": formatted_results,
|
| 106 |
+
"message": f"Found {len(formatted_results)} results for query: {query}"
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
return {"error": f"Search failed: {str(e)}"}
|
| 111 |
+
|
| 112 |
+
def visit_url(self, url: str) -> Dict[str, Any]:
|
| 113 |
+
"""Visit a URL and extract its content.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
url: The URL to visit
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
Dict containing the page content, title, and metadata
|
| 120 |
+
"""
|
| 121 |
+
try:
|
| 122 |
+
# Validate URL
|
| 123 |
+
parsed_url = urlparse(url)
|
| 124 |
+
if not parsed_url.scheme or not parsed_url.netloc:
|
| 125 |
+
return {"error": f"Invalid URL: {url}"}
|
| 126 |
+
|
| 127 |
+
headers = {"User-Agent": self.user_agent}
|
| 128 |
+
response = requests.get(url, headers=headers, timeout=15)
|
| 129 |
+
response.raise_for_status()
|
| 130 |
+
|
| 131 |
+
# Parse the HTML content
|
| 132 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
| 133 |
+
|
| 134 |
+
# Extract title
|
| 135 |
+
title = soup.title.string if soup.title else "No title"
|
| 136 |
+
|
| 137 |
+
# Extract main content (remove scripts, styles, etc.)
|
| 138 |
+
for script in soup(["script", "style", "meta", "noscript"]):
|
| 139 |
+
script.extract()
|
| 140 |
+
|
| 141 |
+
# Get text content
|
| 142 |
+
text_content = soup.get_text(separator="\n", strip=True)
|
| 143 |
+
# Clean up whitespace
|
| 144 |
+
text_content = re.sub(r'\n+', '\n', text_content)
|
| 145 |
+
text_content = re.sub(r' +', ' ', text_content)
|
| 146 |
+
|
| 147 |
+
# Extract links
|
| 148 |
+
links = []
|
| 149 |
+
for link in soup.find_all("a", href=True):
|
| 150 |
+
href = link["href"]
|
| 151 |
+
# Handle relative URLs
|
| 152 |
+
if href.startswith("/"):
|
| 153 |
+
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
|
| 154 |
+
href = base_url + href
|
| 155 |
+
if href.startswith(("http://", "https://")):
|
| 156 |
+
links.append({
|
| 157 |
+
"text": link.get_text(strip=True) or href,
|
| 158 |
+
"url": href
|
| 159 |
+
})
|
| 160 |
+
|
| 161 |
+
# Extract images (limited to first 3)
|
| 162 |
+
images = []
|
| 163 |
+
for i, img in enumerate(soup.find_all("img", src=True)[:3]):
|
| 164 |
+
src = img["src"]
|
| 165 |
+
# Handle relative URLs
|
| 166 |
+
if src.startswith("/"):
|
| 167 |
+
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
|
| 168 |
+
src = base_url + src
|
| 169 |
+
if src.startswith(("http://", "https://")):
|
| 170 |
+
images.append(src)
|
| 171 |
+
|
| 172 |
+
return {
|
| 173 |
+
"title": title,
|
| 174 |
+
"content": text_content[:10000] if len(text_content) > 10000 else text_content,
|
| 175 |
+
"url": url,
|
| 176 |
+
"links": links[:10], # Limit to 10 links
|
| 177 |
+
"images": images,
|
| 178 |
+
"content_type": response.headers.get("Content-Type", ""),
|
| 179 |
+
"content_length": len(text_content),
|
| 180 |
+
"truncated": len(text_content) > 10000
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
return {"error": f"Failed to visit {url}: {str(e)}"}
|
| 185 |
+
|
| 186 |
+
async def _arun(self, query: str = "", url: str = "") -> str:
|
| 187 |
+
"""Run the tool asynchronously."""
|
| 188 |
+
return json.dumps(self._run(query=query, url=url))
|
| 189 |
+
|
| 190 |
+
def _run(self, query: str = "", url: str = "") -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
| 191 |
+
"""Run the web browser tool.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
query: Search query (if searching)
|
| 195 |
+
url: URL to visit (if visiting a specific page)
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
Tuple[Dict[str, Any], Dict[str, Any]]: A tuple containing the results and metadata
|
| 199 |
+
"""
|
| 200 |
+
metadata = {
|
| 201 |
+
"query": query if query else "",
|
| 202 |
+
"url": url if url else "",
|
| 203 |
+
"timestamp": time.time(),
|
| 204 |
+
"tool": "WebBrowserTool"
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
if url:
|
| 208 |
+
result = self.visit_url(url)
|
| 209 |
+
return result, metadata
|
| 210 |
+
elif query:
|
| 211 |
+
result = self.search_web(query)
|
| 212 |
+
return result, metadata
|
| 213 |
+
else:
|
| 214 |
+
return {"error": "Please provide either a search query or a URL to visit"}, metadata
|
| 215 |
+
|
pyproject.toml
CHANGED
|
@@ -66,6 +66,7 @@ dependencies = [
|
|
| 66 |
"chromadb>=0.0.10",
|
| 67 |
"pinecone-client>=3.2.2",
|
| 68 |
"langchain-pinecone>=0.0.1",
|
|
|
|
| 69 |
]
|
| 70 |
|
| 71 |
[project.optional-dependencies]
|
|
|
|
| 66 |
"chromadb>=0.0.10",
|
| 67 |
"pinecone-client>=3.2.2",
|
| 68 |
"langchain-pinecone>=0.0.1",
|
| 69 |
+
"langchain-google-genai>=0.1.0",
|
| 70 |
]
|
| 71 |
|
| 72 |
[project.optional-dependencies]
|
quickstart.py
CHANGED
|
@@ -11,7 +11,7 @@ from datasets import load_dataset
|
|
| 11 |
|
| 12 |
# Initialize global variables
|
| 13 |
logger = logging.getLogger('benchmark')
|
| 14 |
-
model_name = '
|
| 15 |
temperature = 0.2 # default value
|
| 16 |
log_filename = None
|
| 17 |
|
|
@@ -199,7 +199,7 @@ def main():
|
|
| 199 |
# Add command line argument parsing
|
| 200 |
parser = argparse.ArgumentParser(description='Run medical image analysis benchmark')
|
| 201 |
parser.add_argument('--use-urls', action='store_true', help='Use image URLs instead of local files')
|
| 202 |
-
parser.add_argument('--model', type=str, default='
|
| 203 |
parser.add_argument('--temperature', type=float, default=0.2, help='Temperature for model inference')
|
| 204 |
parser.add_argument('--log-prefix', type=str, help='Prefix for log filename (default: model name)')
|
| 205 |
parser.add_argument('--max-cases', type=int, default=None, help='Maximum number of cases to process (default: all)')
|
|
|
|
| 11 |
|
| 12 |
# Initialize global variables
|
| 13 |
logger = logging.getLogger('benchmark')
|
| 14 |
+
model_name = 'gpt-4.1-2025-04-14' # default value
|
| 15 |
temperature = 0.2 # default value
|
| 16 |
log_filename = None
|
| 17 |
|
|
|
|
| 199 |
# Add command line argument parsing
|
| 200 |
parser = argparse.ArgumentParser(description='Run medical image analysis benchmark')
|
| 201 |
parser.add_argument('--use-urls', action='store_true', help='Use image URLs instead of local files')
|
| 202 |
+
parser.add_argument('--model', type=str, default='gpt-4.1-2025-04-14', help='Model name to use')
|
| 203 |
parser.add_argument('--temperature', type=float, default=0.2, help='Temperature for model inference')
|
| 204 |
parser.add_argument('--log-prefix', type=str, help='Prefix for log filename (default: model name)')
|
| 205 |
parser.add_argument('--max-cases', type=int, default=None, help='Maximum number of cases to process (default: all)')
|