victorli
commited on
Commit
·
7b3e756
1
Parent(s):
fbcbf94
fixed medgemma
Browse files- .gitignore +2 -1
- benchmarking/llm_providers/medrax_provider.py +5 -5
- main.py +9 -9
- medrax/tools/medgemma.py +0 -225
- medrax/tools/medgemma_client.py +0 -145
.gitignore
CHANGED
|
@@ -180,4 +180,5 @@ model-weights/
|
|
| 180 |
.DS_Store
|
| 181 |
|
| 182 |
benchmarking/data/
|
| 183 |
-
model_cache/
|
|
|
|
|
|
| 180 |
.DS_Store
|
| 181 |
|
| 182 |
benchmarking/data/
|
| 183 |
+
model_cache/
|
| 184 |
+
medgemma/
|
benchmarking/llm_providers/medrax_provider.py
CHANGED
|
@@ -33,12 +33,12 @@ class MedRAXProvider(LLMProvider):
|
|
| 33 |
print("Starting server...")
|
| 34 |
|
| 35 |
selected_tools = [
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
# "XRayVQATool", # For visual question answering on X-rays
|
| 40 |
-
"MedGemmaVQATool"
|
| 41 |
-
# "XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 42 |
# "MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 43 |
# "WebBrowserTool", # For web browsing and search capabilities
|
| 44 |
# "DuckDuckGoSearchTool", # For privacy-focused web search using DuckDuckGo
|
|
|
|
| 33 |
print("Starting server...")
|
| 34 |
|
| 35 |
selected_tools = [
|
| 36 |
+
"TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
|
| 37 |
+
"ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
|
| 38 |
+
"ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
| 39 |
+
"XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 40 |
+
"MedGemmaVQATool",
|
| 41 |
# "XRayVQATool", # For visual question answering on X-rays
|
|
|
|
|
|
|
| 42 |
# "MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 43 |
# "WebBrowserTool", # For web browsing and search capabilities
|
| 44 |
# "DuckDuckGoSearchTool", # For privacy-focused web search using DuckDuckGo
|
main.py
CHANGED
|
@@ -68,7 +68,7 @@ def initialize_agent(
|
|
| 68 |
prompt = prompts[system_prompt]
|
| 69 |
|
| 70 |
# Define the URL of the MedGemma FastAPI service.
|
| 71 |
-
MEDGEMMA_API_URL = os.getenv("MEDGEMMA_API_URL", "http://
|
| 72 |
|
| 73 |
all_tools = {
|
| 74 |
"TorchXRayVisionClassifierTool": lambda: TorchXRayVisionClassifierTool(device=device),
|
|
@@ -98,20 +98,20 @@ def initialize_agent(
|
|
| 98 |
|
| 99 |
# Initialize only selected tools or all if none specified
|
| 100 |
tools_dict: Dict[str, BaseTool] = {}
|
|
|
|
| 101 |
if tools_to_use is None:
|
| 102 |
tools_to_use = []
|
|
|
|
| 103 |
for tool_name in tools_to_use:
|
| 104 |
if tool_name == "PythonSandboxTool":
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
if tool_name in all_tools:
|
| 107 |
tools_dict[tool_name] = all_tools[tool_name]()
|
| 108 |
-
|
| 109 |
-
# Try to create the PythonSandboxTool
|
| 110 |
-
try:
|
| 111 |
-
tools_dict["PythonSandboxTool"] = create_python_sandbox()
|
| 112 |
-
except Exception as e:
|
| 113 |
-
print(f"Error creating PythonSandboxTool: {e}")
|
| 114 |
-
print("Skipping PythonSandboxTool")
|
| 115 |
|
| 116 |
# Set up checkpointing for conversation state
|
| 117 |
checkpointer = MemorySaver()
|
|
|
|
| 68 |
prompt = prompts[system_prompt]
|
| 69 |
|
| 70 |
# Define the URL of the MedGemma FastAPI service.
|
| 71 |
+
MEDGEMMA_API_URL = os.getenv("MEDGEMMA_API_URL", "http://172.17.8.141:8002")
|
| 72 |
|
| 73 |
all_tools = {
|
| 74 |
"TorchXRayVisionClassifierTool": lambda: TorchXRayVisionClassifierTool(device=device),
|
|
|
|
| 98 |
|
| 99 |
# Initialize only selected tools or all if none specified
|
| 100 |
tools_dict: Dict[str, BaseTool] = {}
|
| 101 |
+
|
| 102 |
if tools_to_use is None:
|
| 103 |
tools_to_use = []
|
| 104 |
+
|
| 105 |
for tool_name in tools_to_use:
|
| 106 |
if tool_name == "PythonSandboxTool":
|
| 107 |
+
try:
|
| 108 |
+
tools_dict["PythonSandboxTool"] = create_python_sandbox()
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"Error creating PythonSandboxTool: {e}")
|
| 111 |
+
print("Skipping PythonSandboxTool")
|
| 112 |
if tool_name in all_tools:
|
| 113 |
tools_dict[tool_name] = all_tools[tool_name]()
|
| 114 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
# Set up checkpointing for conversation state
|
| 117 |
checkpointer = MemorySaver()
|
medrax/tools/medgemma.py
DELETED
|
@@ -1,225 +0,0 @@
|
|
| 1 |
-
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
| 2 |
-
from pydantic import BaseModel, Field
|
| 3 |
-
from typing import List, Optional, Any, Dict, Tuple
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
import torch
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from transformers import pipeline, BitsAndBytesConfig
|
| 8 |
-
import asyncio
|
| 9 |
-
import uvicorn
|
| 10 |
-
import os
|
| 11 |
-
import uuid
|
| 12 |
-
import traceback
|
| 13 |
-
import sys
|
| 14 |
-
import transformers
|
| 15 |
-
|
| 16 |
-
print("--- ENVIRONMENT CHECK ---")
|
| 17 |
-
print(f"Python Executable: {sys.executable}")
|
| 18 |
-
print(f"PyTorch version: {torch.__version__}")
|
| 19 |
-
print(f"Transformers version: {transformers.__version__}")
|
| 20 |
-
print("-----------------------")
|
| 21 |
-
|
| 22 |
-
# --- Configuration ---
|
| 23 |
-
CACHE_DIR = "./model_cache"
|
| 24 |
-
UPLOAD_DIR = "./uploaded_images"
|
| 25 |
-
|
| 26 |
-
# Create directories if they don't exist
|
| 27 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 28 |
-
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 29 |
-
|
| 30 |
-
# --- Pydantic Models for API ---
|
| 31 |
-
class VQAInput(BaseModel):
|
| 32 |
-
prompt: str = Field(..., description="Question or instruction about the medical images")
|
| 33 |
-
system_prompt: Optional[str] = Field(
|
| 34 |
-
"You are an expert radiologist.",
|
| 35 |
-
description="System prompt to set the context for the model",
|
| 36 |
-
)
|
| 37 |
-
max_new_tokens: int = Field(
|
| 38 |
-
300, description="Maximum number of tokens to generate in the response"
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
class VQAResponse(BaseModel):
|
| 42 |
-
response: str
|
| 43 |
-
metadata: Dict[str, Any]
|
| 44 |
-
|
| 45 |
-
class ErrorResponse(BaseModel):
|
| 46 |
-
error: str
|
| 47 |
-
metadata: Dict[str, Any]
|
| 48 |
-
|
| 49 |
-
# --- MedGemma Model Handling ---
|
| 50 |
-
class MedGemmaModel:
|
| 51 |
-
_instance = None
|
| 52 |
-
|
| 53 |
-
def __new__(cls, *args, **kwargs):
|
| 54 |
-
if not cls._instance:
|
| 55 |
-
cls._instance = super(MedGemmaModel, cls).__new__(cls)
|
| 56 |
-
return cls._instance
|
| 57 |
-
|
| 58 |
-
def __init__(self,
|
| 59 |
-
model_name: str = "google/medgemma-4b-it",
|
| 60 |
-
device: Optional[str] = "cuda",
|
| 61 |
-
dtype: torch.dtype = torch.bfloat16,
|
| 62 |
-
load_in_4bit: bool = False):
|
| 63 |
-
if hasattr(self, 'pipe') and self.pipe is not None:
|
| 64 |
-
return
|
| 65 |
-
|
| 66 |
-
self.device = device if device and torch.cuda.is_available() else "cpu"
|
| 67 |
-
self.dtype = dtype
|
| 68 |
-
self.pipe = None
|
| 69 |
-
|
| 70 |
-
model_kwargs = {"torch_dtype": self.dtype, "cache_dir": CACHE_DIR}
|
| 71 |
-
|
| 72 |
-
if load_in_4bit:
|
| 73 |
-
model_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True)
|
| 74 |
-
model_kwargs["device_map"] = {"": self.device}
|
| 75 |
-
|
| 76 |
-
try:
|
| 77 |
-
self.pipe = pipeline("image-text-to-text",
|
| 78 |
-
model=model_name,
|
| 79 |
-
model_kwargs=model_kwargs,
|
| 80 |
-
trust_remote_code=True,
|
| 81 |
-
use_cache=True)
|
| 82 |
-
except Exception as e:
|
| 83 |
-
raise RuntimeError(f"Failed to initialize MedGemma pipeline: {str(e)}")
|
| 84 |
-
|
| 85 |
-
def _prepare_messages(
|
| 86 |
-
self, image_paths: List[str], prompt: str, system_prompt: str
|
| 87 |
-
) -> Tuple[List[Dict[str, Any]], List[Image.Image]]:
|
| 88 |
-
images = []
|
| 89 |
-
for path in image_paths:
|
| 90 |
-
if not Path(path).is_file():
|
| 91 |
-
raise FileNotFoundError(f"Image file not found: {path}")
|
| 92 |
-
|
| 93 |
-
image = Image.open(path)
|
| 94 |
-
if image.mode != "RGB":
|
| 95 |
-
image = image.convert("RGB")
|
| 96 |
-
images.append(image)
|
| 97 |
-
|
| 98 |
-
messages = [
|
| 99 |
-
{"role": "system", "content": [{"type": "text", "text": system_prompt}]},
|
| 100 |
-
{
|
| 101 |
-
"role": "user",
|
| 102 |
-
"content": [{"type": "text", "text": prompt}]
|
| 103 |
-
+ [{"type": "image", "image": img} for img in images],
|
| 104 |
-
},
|
| 105 |
-
]
|
| 106 |
-
|
| 107 |
-
return messages, images
|
| 108 |
-
|
| 109 |
-
async def aget_response(self, image_paths: List[str], prompt: str, system_prompt: str, max_new_tokens: int) -> str:
|
| 110 |
-
loop = asyncio.get_event_loop()
|
| 111 |
-
messages, _ = await loop.run_in_executor(None, self._prepare_messages, image_paths, prompt, system_prompt)
|
| 112 |
-
|
| 113 |
-
def _generate():
|
| 114 |
-
return self.pipe(
|
| 115 |
-
text=messages,
|
| 116 |
-
max_new_tokens=max_new_tokens,
|
| 117 |
-
do_sample=False,
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
output = await loop.run_in_executor(None, _generate)
|
| 121 |
-
|
| 122 |
-
if (
|
| 123 |
-
isinstance(output, list)
|
| 124 |
-
and output
|
| 125 |
-
and isinstance(output[0].get("generated_text"), list)
|
| 126 |
-
):
|
| 127 |
-
generated_text = output[0]["generated_text"]
|
| 128 |
-
if generated_text:
|
| 129 |
-
return generated_text[-1].get("content", "").strip()
|
| 130 |
-
|
| 131 |
-
return "No response generated"
|
| 132 |
-
|
| 133 |
-
# --- FastAPI Application ---
|
| 134 |
-
app = FastAPI(title="MedGemma VQA API",
|
| 135 |
-
description="API for medical visual question answering using Google's MedGemma model.")
|
| 136 |
-
|
| 137 |
-
medgemma_model: Optional[MedGemmaModel] = None
|
| 138 |
-
|
| 139 |
-
@app.on_event("startup")
|
| 140 |
-
async def startup_event():
|
| 141 |
-
"""Load the MedGemma model at application startup."""
|
| 142 |
-
global medgemma_model
|
| 143 |
-
try:
|
| 144 |
-
medgemma_model = MedGemmaModel()
|
| 145 |
-
print("MedGemma model loaded successfully.")
|
| 146 |
-
except RuntimeError as e:
|
| 147 |
-
print(f"Error loading MedGemma model: {e}")
|
| 148 |
-
# Depending on the desired behavior, you might want to exit the application
|
| 149 |
-
# if the model fails to load.
|
| 150 |
-
# exit(1)
|
| 151 |
-
|
| 152 |
-
@app.post("/analyze-images/",
|
| 153 |
-
response_model=VQAResponse,
|
| 154 |
-
responses={500: {"model": ErrorResponse},
|
| 155 |
-
404: {"model": ErrorResponse}},
|
| 156 |
-
summary="Analyze one or more medical images")
|
| 157 |
-
async def analyze_images(
|
| 158 |
-
images: List[UploadFile] = File(..., description="List of medical image files to analyze (JPG or PNG)."),
|
| 159 |
-
prompt: str = Form(..., description="Question or instruction about the medical images."),
|
| 160 |
-
system_prompt: Optional[str] = Form("You are an expert radiologist.", description="System prompt to set the context for the model."),
|
| 161 |
-
max_new_tokens: int = Form(100, description="Maximum number of tokens to generate in the response.")
|
| 162 |
-
):
|
| 163 |
-
"""
|
| 164 |
-
Upload one or more medical images and a prompt to get an analysis from the MedGemma model.
|
| 165 |
-
"""
|
| 166 |
-
if medgemma_model is None or medgemma_model.pipe is None:
|
| 167 |
-
raise HTTPException(status_code=503, detail="Model is not available. Please try again later.")
|
| 168 |
-
|
| 169 |
-
image_paths = []
|
| 170 |
-
for image in images:
|
| 171 |
-
if image.content_type not in ["image/jpeg", "image/png"]:
|
| 172 |
-
raise HTTPException(status_code=400, detail=f"Unsupported image format: {image.content_type}. Only JPG and PNG are supported.")
|
| 173 |
-
|
| 174 |
-
# Generate a unique filename to avoid overwrites
|
| 175 |
-
unique_filename = f"{uuid.uuid4()}_{image.filename}"
|
| 176 |
-
file_path = os.path.join(UPLOAD_DIR, unique_filename)
|
| 177 |
-
|
| 178 |
-
try:
|
| 179 |
-
with open(file_path, "wb") as buffer:
|
| 180 |
-
buffer.write(await image.read())
|
| 181 |
-
image_paths.append(file_path)
|
| 182 |
-
except Exception as e:
|
| 183 |
-
raise HTTPException(status_code=500, detail=f"Failed to save uploaded image: {str(e)}")
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
try:
|
| 187 |
-
response_text = await medgemma_model.aget_response(image_paths, prompt, system_prompt, max_new_tokens)
|
| 188 |
-
metadata = {
|
| 189 |
-
"image_paths": image_paths,
|
| 190 |
-
"prompt": prompt,
|
| 191 |
-
"system_prompt": system_prompt,
|
| 192 |
-
"max_new_tokens": max_new_tokens,
|
| 193 |
-
"num_images": len(image_paths),
|
| 194 |
-
"analysis_status": "completed",
|
| 195 |
-
}
|
| 196 |
-
return VQAResponse(response=response_text, metadata=metadata)
|
| 197 |
-
except FileNotFoundError as e:
|
| 198 |
-
raise HTTPException(status_code=404, detail=f"Image file not found: {str(e)}")
|
| 199 |
-
except Exception as e:
|
| 200 |
-
print("--- AN EXCEPTION OCCURRED IN THE ENDPOINT ---")
|
| 201 |
-
traceback.print_exc()
|
| 202 |
-
# Catch potential CUDA out-of-memory errors and other exceptions
|
| 203 |
-
error_message = "An unexpected error occurred during analysis."
|
| 204 |
-
if "CUDA out of memory" in str(e):
|
| 205 |
-
error_message = "GPU memory exhausted. Try reducing image resolution or max_new_tokens."
|
| 206 |
-
|
| 207 |
-
metadata = {
|
| 208 |
-
"image_paths": image_paths,
|
| 209 |
-
"prompt": prompt,
|
| 210 |
-
"analysis_status": "failed",
|
| 211 |
-
"error_details": str(e),
|
| 212 |
-
}
|
| 213 |
-
raise HTTPException(status_code=500, detail=error_message)
|
| 214 |
-
finally:
|
| 215 |
-
# Clean up saved images
|
| 216 |
-
for path in image_paths:
|
| 217 |
-
try:
|
| 218 |
-
os.remove(path)
|
| 219 |
-
except OSError:
|
| 220 |
-
# Log this error if needed, but don't let it crash the request
|
| 221 |
-
pass
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
if __name__ == "__main__":
|
| 225 |
-
uvicorn.run(app, host="0.0.0.0", port=8002)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
medrax/tools/medgemma_client.py
DELETED
|
@@ -1,145 +0,0 @@
|
|
| 1 |
-
import httpx
|
| 2 |
-
from typing import Dict, List, Optional, Type, Any
|
| 3 |
-
from langchain_core.tools import BaseTool
|
| 4 |
-
from langchain_core.callbacks import (
|
| 5 |
-
AsyncCallbackManagerForToolRun,
|
| 6 |
-
CallbackManagerForToolRun,
|
| 7 |
-
)
|
| 8 |
-
from pydantic import BaseModel, Field
|
| 9 |
-
import os
|
| 10 |
-
|
| 11 |
-
# This input schema should be identical to the one in your original tool
|
| 12 |
-
class MedGemmaVQAInput(BaseModel):
|
| 13 |
-
"""Input schema for the MedGemma VQA Tool. The agent provides local paths to images."""
|
| 14 |
-
image_paths: List[str] = Field(
|
| 15 |
-
...,
|
| 16 |
-
description="List of paths to medical image files to analyze. These are local paths accessible to the agent.",
|
| 17 |
-
)
|
| 18 |
-
prompt: str = Field(..., description="Question or instruction about the medical images")
|
| 19 |
-
system_prompt: Optional[str] = Field(
|
| 20 |
-
"You are an expert radiologist.",
|
| 21 |
-
description="System prompt to set the context for the model",
|
| 22 |
-
)
|
| 23 |
-
max_new_tokens: int = Field(
|
| 24 |
-
300, description="Maximum number of tokens to generate in the response"
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
class MedGemmaAPIClientTool(BaseTool):
|
| 28 |
-
"""
|
| 29 |
-
A client tool to interact with a remote MedGemma VQA FastAPI service.
|
| 30 |
-
This tool takes local image paths, reads them, and sends them to the API endpoint
|
| 31 |
-
for analysis.
|
| 32 |
-
"""
|
| 33 |
-
name: str = "medgemma_medical_vqa_service"
|
| 34 |
-
description: str = (
|
| 35 |
-
"Sends medical images and a prompt to a specialized MedGemma VQA service for analysis. "
|
| 36 |
-
"Use this for expert-level reasoning, diagnosis assistance, and detailed image interpretation "
|
| 37 |
-
"across modalities like chest X-rays, dermatology, etc. Input must be local image paths and a prompt."
|
| 38 |
-
)
|
| 39 |
-
args_schema: Type[BaseModel] = MedGemmaVQAInput
|
| 40 |
-
api_url: str # The URL of the running FastAPI service
|
| 41 |
-
|
| 42 |
-
def _run(
|
| 43 |
-
self,
|
| 44 |
-
image_paths: List[str],
|
| 45 |
-
prompt: str,
|
| 46 |
-
system_prompt: str = "You are an expert radiologist.",
|
| 47 |
-
max_new_tokens: int = 300,
|
| 48 |
-
run_manager: Optional[CallbackManagerForToolRun] = None,
|
| 49 |
-
) -> str:
|
| 50 |
-
"""Execute the tool synchronously."""
|
| 51 |
-
# httpx is a modern HTTP client that supports sync and async
|
| 52 |
-
timeout_config = httpx.Timeout(300.0, connect=10.0)
|
| 53 |
-
client = httpx.Client(timeout=timeout_config)
|
| 54 |
-
|
| 55 |
-
# Prepare the multipart form data
|
| 56 |
-
files_to_send = []
|
| 57 |
-
opened_files = []
|
| 58 |
-
try:
|
| 59 |
-
for path in image_paths:
|
| 60 |
-
f = open(path, "rb")
|
| 61 |
-
opened_files.append(f)
|
| 62 |
-
# The key 'images' must match the parameter name in the FastAPI endpoint
|
| 63 |
-
files_to_send.append(("images", (os.path.basename(path), f, "image/jpeg")))
|
| 64 |
-
|
| 65 |
-
data = {
|
| 66 |
-
"prompt": prompt,
|
| 67 |
-
"system_prompt": system_prompt,
|
| 68 |
-
"max_new_tokens": max_new_tokens,
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
response = client.post(
|
| 72 |
-
f"{self.api_url}/analyze-images/",
|
| 73 |
-
data=data,
|
| 74 |
-
files=files_to_send,
|
| 75 |
-
)
|
| 76 |
-
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
|
| 77 |
-
|
| 78 |
-
# The agent expects a string response from a tool
|
| 79 |
-
return response.json()["response"]
|
| 80 |
-
|
| 81 |
-
# --- KEY FIX 3: More specific exception handling for clearer errors ---
|
| 82 |
-
except httpx.TimeoutException:
|
| 83 |
-
return f"Error: The request to the MedGemma API timed out after {timeout_config.read} seconds. The server might be overloaded or the model is taking too long to load. Try again later."
|
| 84 |
-
except httpx.ConnectError:
|
| 85 |
-
return f"Error: Could not connect to the MedGemma API. Check if the server address '{self.api_url}' is correct and running."
|
| 86 |
-
except httpx.HTTPStatusError as e:
|
| 87 |
-
return f"Error: The MedGemma API returned an error (Status {e.response.status_code}): {e.response.text}"
|
| 88 |
-
except Exception as e:
|
| 89 |
-
return f"An unexpected error occurred in the MedGemma client tool: {str(e)}"
|
| 90 |
-
finally:
|
| 91 |
-
# Important: Ensure all opened files are closed.
|
| 92 |
-
for f in opened_files:
|
| 93 |
-
f.close()
|
| 94 |
-
|
| 95 |
-
async def _arun(
|
| 96 |
-
self,
|
| 97 |
-
image_paths: List[str],
|
| 98 |
-
prompt: str,
|
| 99 |
-
system_prompt: str = "You are an expert radiologist.",
|
| 100 |
-
max_new_tokens: int = 300,
|
| 101 |
-
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
| 102 |
-
) -> str:
|
| 103 |
-
"""Execute the tool asynchronously."""
|
| 104 |
-
async with httpx.AsyncClient() as client:
|
| 105 |
-
files_to_send = []
|
| 106 |
-
opened_files = []
|
| 107 |
-
try:
|
| 108 |
-
# Note: File I/O is blocking, for a truly async app you might use aiofiles
|
| 109 |
-
# But for this use case, this is generally acceptable.
|
| 110 |
-
for path in image_paths:
|
| 111 |
-
f = open(path, "rb")
|
| 112 |
-
opened_files.append(f)
|
| 113 |
-
files_to_send.append(("images", (os.path.basename(path), f, "image/jpeg")))
|
| 114 |
-
|
| 115 |
-
data = {
|
| 116 |
-
"prompt": prompt,
|
| 117 |
-
"system_prompt": system_prompt,
|
| 118 |
-
"max_new_tokens": max_new_tokens,
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
response = await client.post(
|
| 122 |
-
f"{self.api_url}/analyze-images/",
|
| 123 |
-
data=data,
|
| 124 |
-
files=files_to_send,
|
| 125 |
-
timeout=120.0
|
| 126 |
-
)
|
| 127 |
-
response.raise_for_status()
|
| 128 |
-
|
| 129 |
-
return response.json()["response"]
|
| 130 |
-
|
| 131 |
-
except httpx.HTTPStatusError as e:
|
| 132 |
-
return f"Error calling MedGemma API: {e.response.status_code} - {e.response.text}"
|
| 133 |
-
except Exception as e:
|
| 134 |
-
return f"An unexpected error occurred: {str(e)}"
|
| 135 |
-
finally:
|
| 136 |
-
for f in opened_files:
|
| 137 |
-
f.close()
|
| 138 |
-
|
| 139 |
-
if __name__ == "__main__":
|
| 140 |
-
client_tool = MedGemmaAPIClientTool(api_url="http://localhost:8002")
|
| 141 |
-
result = client_tool.run({
|
| 142 |
-
"image_paths": ["demo/chest/pneumonia1.jpg"],
|
| 143 |
-
"prompt": "What abnormality do you see?"
|
| 144 |
-
})
|
| 145 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|