Adibvafa
commited on
Commit
·
afcde13
1
Parent(s):
7844d6e
Improve style
Browse files- scripts/pdf_to_hf_dataset.py +83 -76
scripts/pdf_to_hf_dataset.py
CHANGED
|
@@ -29,52 +29,52 @@ from datasets import Dataset
|
|
| 29 |
|
| 30 |
class PDFToHFConverter:
|
| 31 |
"""Converter for PDF files to HuggingFace dataset format."""
|
| 32 |
-
|
| 33 |
def __init__(self, chunk_size: int = 1500, chunk_overlap: int = 300):
|
| 34 |
"""Initialize the converter with chunking configuration."""
|
| 35 |
self.chunk_size = chunk_size
|
| 36 |
self.chunk_overlap = chunk_overlap
|
| 37 |
-
|
| 38 |
# Define text splitting separators
|
| 39 |
separators = [
|
| 40 |
"\n\n", # Double newlines (paragraphs)
|
| 41 |
-
"\n",
|
| 42 |
-
". ",
|
| 43 |
-
"? ",
|
| 44 |
-
"! ",
|
| 45 |
-
"; ",
|
| 46 |
-
", ",
|
| 47 |
-
" ",
|
| 48 |
-
""
|
| 49 |
]
|
| 50 |
-
|
| 51 |
self.text_splitter = RecursiveCharacterTextSplitter(
|
| 52 |
chunk_size=chunk_size,
|
| 53 |
chunk_overlap=chunk_overlap,
|
| 54 |
separators=separators,
|
| 55 |
length_function=len,
|
| 56 |
)
|
| 57 |
-
|
| 58 |
def process_pdf(self, pdf_path: str) -> List[Dict[str, Any]]:
|
| 59 |
"""Process a single PDF file and return chunks with metadata."""
|
| 60 |
try:
|
| 61 |
print(f"Processing: {pdf_path}")
|
| 62 |
-
|
| 63 |
# Load PDF
|
| 64 |
loader = PyPDFLoader(pdf_path)
|
| 65 |
documents = loader.load()
|
| 66 |
-
|
| 67 |
if not documents:
|
| 68 |
print(f"Warning: No content extracted from {pdf_path}")
|
| 69 |
return []
|
| 70 |
-
|
| 71 |
# Combine all pages into one document for better chunking
|
| 72 |
full_text = "\n\n".join([doc.page_content for doc in documents])
|
| 73 |
-
|
| 74 |
# Extract title (filename without extension)
|
| 75 |
filename = Path(pdf_path).name
|
| 76 |
title = Path(pdf_path).stem
|
| 77 |
-
|
| 78 |
# Create a single document for chunking
|
| 79 |
combined_doc = Document(
|
| 80 |
page_content=full_text,
|
|
@@ -82,27 +82,27 @@ class PDFToHFConverter:
|
|
| 82 |
"source": pdf_path,
|
| 83 |
"title": title,
|
| 84 |
"filename": filename,
|
| 85 |
-
"total_pages": len(documents)
|
| 86 |
-
}
|
| 87 |
)
|
| 88 |
-
|
| 89 |
# Split into chunks
|
| 90 |
chunks = self.text_splitter.split_documents([combined_doc])
|
| 91 |
-
|
| 92 |
# Convert to HF format
|
| 93 |
hf_chunks = []
|
| 94 |
for i, chunk in enumerate(chunks):
|
| 95 |
# Create unique ID using hash of content + position
|
| 96 |
content_hash = hashlib.md5(chunk.page_content.encode()).hexdigest()[:8]
|
| 97 |
chunk_id = f"{Path(pdf_path).stem}_{i:04d}_{content_hash}"
|
| 98 |
-
|
| 99 |
# Clean content
|
| 100 |
content = chunk.page_content.strip()
|
| 101 |
-
|
| 102 |
# Skip very short chunks
|
| 103 |
if len(content) < 100:
|
| 104 |
continue
|
| 105 |
-
|
| 106 |
hf_chunk = {
|
| 107 |
"id": chunk_id,
|
| 108 |
"title": title,
|
|
@@ -111,47 +111,48 @@ class PDFToHFConverter:
|
|
| 111 |
"filename": filename,
|
| 112 |
"chunk_index": i,
|
| 113 |
"total_chunks": len(chunks),
|
| 114 |
-
"chunk_size": len(content)
|
| 115 |
}
|
| 116 |
-
|
| 117 |
hf_chunks.append(hf_chunk)
|
| 118 |
-
|
| 119 |
print(f"Created {len(hf_chunks)} chunks from {pdf_path}")
|
| 120 |
return hf_chunks
|
| 121 |
-
|
| 122 |
except Exception as e:
|
| 123 |
print(f"Error processing {pdf_path}: {str(e)}")
|
| 124 |
return []
|
| 125 |
-
|
| 126 |
-
def process_directory(
|
| 127 |
-
|
|
|
|
| 128 |
"""Process all PDFs in a directory and save in HF format."""
|
| 129 |
input_path = Path(input_dir)
|
| 130 |
output_path = Path(output_dir)
|
| 131 |
output_path.mkdir(parents=True, exist_ok=True)
|
| 132 |
-
|
| 133 |
# Find all PDF files
|
| 134 |
pdf_files = list(input_path.glob("**/*.pdf"))
|
| 135 |
-
|
| 136 |
if not pdf_files:
|
| 137 |
print(f"No PDF files found in {input_dir}")
|
| 138 |
return
|
| 139 |
-
|
| 140 |
print(f"Found {len(pdf_files)} PDF files to process")
|
| 141 |
-
|
| 142 |
all_chunks = []
|
| 143 |
-
|
| 144 |
# Process each PDF
|
| 145 |
for pdf_path in tqdm(pdf_files, desc="Processing PDFs"):
|
| 146 |
chunks = self.process_pdf(str(pdf_path))
|
| 147 |
all_chunks.extend(chunks)
|
| 148 |
-
|
| 149 |
if not all_chunks:
|
| 150 |
print("No chunks were created from any PDFs")
|
| 151 |
return
|
| 152 |
-
|
| 153 |
print(f"Total chunks created: {len(all_chunks)}")
|
| 154 |
-
|
| 155 |
# Save in requested format
|
| 156 |
if output_format.lower() == "json":
|
| 157 |
self.save_as_json(all_chunks, output_path)
|
|
@@ -164,53 +165,49 @@ class PDFToHFConverter:
|
|
| 164 |
else:
|
| 165 |
print(f"Unsupported format: {output_format}")
|
| 166 |
return
|
| 167 |
-
|
| 168 |
# Also save metadata
|
| 169 |
self.save_metadata(all_chunks, output_path)
|
| 170 |
-
|
| 171 |
print(f"Dataset saved to {output_path}")
|
| 172 |
print(f"Ready for HuggingFace upload!")
|
| 173 |
-
|
| 174 |
def save_as_json(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 175 |
"""Save chunks as JSON file."""
|
| 176 |
output_file = output_path / "dataset.json"
|
| 177 |
-
with open(output_file,
|
| 178 |
json.dump(chunks, f, indent=2, ensure_ascii=False)
|
| 179 |
print(f"Saved JSON: {output_file}")
|
| 180 |
-
|
| 181 |
def save_as_jsonl(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 182 |
"""Save chunks as JSONL file."""
|
| 183 |
output_file = output_path / "dataset.jsonl"
|
| 184 |
-
with open(output_file,
|
| 185 |
for chunk in chunks:
|
| 186 |
json.dump(chunk, f, ensure_ascii=False)
|
| 187 |
-
f.write(
|
| 188 |
print(f"Saved JSONL: {output_file}")
|
| 189 |
-
|
| 190 |
def save_as_parquet(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 191 |
"""Save chunks as Parquet file."""
|
| 192 |
# Create minimal version for HF (only required fields)
|
| 193 |
hf_data = [
|
| 194 |
-
{
|
| 195 |
-
"id": chunk["id"],
|
| 196 |
-
"title": chunk["title"],
|
| 197 |
-
"content": chunk["content"]
|
| 198 |
-
}
|
| 199 |
for chunk in chunks
|
| 200 |
]
|
| 201 |
-
|
| 202 |
df = pd.DataFrame(hf_data)
|
| 203 |
output_file = output_path / "dataset.parquet"
|
| 204 |
df.to_parquet(output_file, index=False)
|
| 205 |
print(f"Saved Parquet: {output_file}")
|
| 206 |
-
|
| 207 |
def save_as_csv(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 208 |
"""Save chunks as CSV file."""
|
| 209 |
df = pd.DataFrame(chunks)
|
| 210 |
output_file = output_path / "dataset.csv"
|
| 211 |
-
df.to_csv(output_file, index=False, encoding=
|
| 212 |
print(f"Saved CSV: {output_file}")
|
| 213 |
-
|
| 214 |
def save_metadata(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 215 |
"""Save dataset metadata and statistics."""
|
| 216 |
metadata = {
|
|
@@ -220,36 +217,46 @@ class PDFToHFConverter:
|
|
| 220 |
"chunk_size_config": self.chunk_size,
|
| 221 |
"chunk_overlap_config": self.chunk_overlap,
|
| 222 |
"sources": list(set(chunk["source"] for chunk in chunks)),
|
| 223 |
-
"titles": list(set(chunk["title"] for chunk in chunks))
|
| 224 |
}
|
| 225 |
-
|
| 226 |
metadata_file = output_path / "metadata.json"
|
| 227 |
-
with open(metadata_file,
|
| 228 |
json.dump(metadata, f, indent=2, ensure_ascii=False)
|
| 229 |
print(f"Saved metadata: {metadata_file}")
|
| 230 |
|
|
|
|
| 231 |
if __name__ == "__main__":
|
| 232 |
"""Main function to run the converter."""
|
| 233 |
parser = argparse.ArgumentParser(description="Convert PDF files to HuggingFace dataset format")
|
| 234 |
parser.add_argument("--input_dir", "-i", required=True, help="Directory containing PDF files")
|
| 235 |
parser.add_argument("--output_dir", "-o", required=True, help="Output directory for dataset")
|
| 236 |
-
parser.add_argument(
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
args = parser.parse_args()
|
| 245 |
-
|
| 246 |
# Create converter and process
|
| 247 |
-
converter = PDFToHFConverter(
|
| 248 |
-
chunk_size=args.chunk_size,
|
| 249 |
-
chunk_overlap=args.chunk_overlap
|
| 250 |
-
)
|
| 251 |
converter.process_directory(
|
| 252 |
-
input_dir=args.input_dir,
|
| 253 |
-
|
| 254 |
-
output_format=args.format
|
| 255 |
-
)
|
|
|
|
| 29 |
|
| 30 |
class PDFToHFConverter:
|
| 31 |
"""Converter for PDF files to HuggingFace dataset format."""
|
| 32 |
+
|
| 33 |
def __init__(self, chunk_size: int = 1500, chunk_overlap: int = 300):
|
| 34 |
"""Initialize the converter with chunking configuration."""
|
| 35 |
self.chunk_size = chunk_size
|
| 36 |
self.chunk_overlap = chunk_overlap
|
| 37 |
+
|
| 38 |
# Define text splitting separators
|
| 39 |
separators = [
|
| 40 |
"\n\n", # Double newlines (paragraphs)
|
| 41 |
+
"\n", # Single newlines
|
| 42 |
+
". ", # Sentences
|
| 43 |
+
"? ", # Questions
|
| 44 |
+
"! ", # Exclamations
|
| 45 |
+
"; ", # Semicolons
|
| 46 |
+
", ", # Commas
|
| 47 |
+
" ", # Spaces
|
| 48 |
+
"", # Characters
|
| 49 |
]
|
| 50 |
+
|
| 51 |
self.text_splitter = RecursiveCharacterTextSplitter(
|
| 52 |
chunk_size=chunk_size,
|
| 53 |
chunk_overlap=chunk_overlap,
|
| 54 |
separators=separators,
|
| 55 |
length_function=len,
|
| 56 |
)
|
| 57 |
+
|
| 58 |
def process_pdf(self, pdf_path: str) -> List[Dict[str, Any]]:
|
| 59 |
"""Process a single PDF file and return chunks with metadata."""
|
| 60 |
try:
|
| 61 |
print(f"Processing: {pdf_path}")
|
| 62 |
+
|
| 63 |
# Load PDF
|
| 64 |
loader = PyPDFLoader(pdf_path)
|
| 65 |
documents = loader.load()
|
| 66 |
+
|
| 67 |
if not documents:
|
| 68 |
print(f"Warning: No content extracted from {pdf_path}")
|
| 69 |
return []
|
| 70 |
+
|
| 71 |
# Combine all pages into one document for better chunking
|
| 72 |
full_text = "\n\n".join([doc.page_content for doc in documents])
|
| 73 |
+
|
| 74 |
# Extract title (filename without extension)
|
| 75 |
filename = Path(pdf_path).name
|
| 76 |
title = Path(pdf_path).stem
|
| 77 |
+
|
| 78 |
# Create a single document for chunking
|
| 79 |
combined_doc = Document(
|
| 80 |
page_content=full_text,
|
|
|
|
| 82 |
"source": pdf_path,
|
| 83 |
"title": title,
|
| 84 |
"filename": filename,
|
| 85 |
+
"total_pages": len(documents),
|
| 86 |
+
},
|
| 87 |
)
|
| 88 |
+
|
| 89 |
# Split into chunks
|
| 90 |
chunks = self.text_splitter.split_documents([combined_doc])
|
| 91 |
+
|
| 92 |
# Convert to HF format
|
| 93 |
hf_chunks = []
|
| 94 |
for i, chunk in enumerate(chunks):
|
| 95 |
# Create unique ID using hash of content + position
|
| 96 |
content_hash = hashlib.md5(chunk.page_content.encode()).hexdigest()[:8]
|
| 97 |
chunk_id = f"{Path(pdf_path).stem}_{i:04d}_{content_hash}"
|
| 98 |
+
|
| 99 |
# Clean content
|
| 100 |
content = chunk.page_content.strip()
|
| 101 |
+
|
| 102 |
# Skip very short chunks
|
| 103 |
if len(content) < 100:
|
| 104 |
continue
|
| 105 |
+
|
| 106 |
hf_chunk = {
|
| 107 |
"id": chunk_id,
|
| 108 |
"title": title,
|
|
|
|
| 111 |
"filename": filename,
|
| 112 |
"chunk_index": i,
|
| 113 |
"total_chunks": len(chunks),
|
| 114 |
+
"chunk_size": len(content),
|
| 115 |
}
|
| 116 |
+
|
| 117 |
hf_chunks.append(hf_chunk)
|
| 118 |
+
|
| 119 |
print(f"Created {len(hf_chunks)} chunks from {pdf_path}")
|
| 120 |
return hf_chunks
|
| 121 |
+
|
| 122 |
except Exception as e:
|
| 123 |
print(f"Error processing {pdf_path}: {str(e)}")
|
| 124 |
return []
|
| 125 |
+
|
| 126 |
+
def process_directory(
|
| 127 |
+
self, input_dir: str, output_dir: str, output_format: str = "json"
|
| 128 |
+
) -> None:
|
| 129 |
"""Process all PDFs in a directory and save in HF format."""
|
| 130 |
input_path = Path(input_dir)
|
| 131 |
output_path = Path(output_dir)
|
| 132 |
output_path.mkdir(parents=True, exist_ok=True)
|
| 133 |
+
|
| 134 |
# Find all PDF files
|
| 135 |
pdf_files = list(input_path.glob("**/*.pdf"))
|
| 136 |
+
|
| 137 |
if not pdf_files:
|
| 138 |
print(f"No PDF files found in {input_dir}")
|
| 139 |
return
|
| 140 |
+
|
| 141 |
print(f"Found {len(pdf_files)} PDF files to process")
|
| 142 |
+
|
| 143 |
all_chunks = []
|
| 144 |
+
|
| 145 |
# Process each PDF
|
| 146 |
for pdf_path in tqdm(pdf_files, desc="Processing PDFs"):
|
| 147 |
chunks = self.process_pdf(str(pdf_path))
|
| 148 |
all_chunks.extend(chunks)
|
| 149 |
+
|
| 150 |
if not all_chunks:
|
| 151 |
print("No chunks were created from any PDFs")
|
| 152 |
return
|
| 153 |
+
|
| 154 |
print(f"Total chunks created: {len(all_chunks)}")
|
| 155 |
+
|
| 156 |
# Save in requested format
|
| 157 |
if output_format.lower() == "json":
|
| 158 |
self.save_as_json(all_chunks, output_path)
|
|
|
|
| 165 |
else:
|
| 166 |
print(f"Unsupported format: {output_format}")
|
| 167 |
return
|
| 168 |
+
|
| 169 |
# Also save metadata
|
| 170 |
self.save_metadata(all_chunks, output_path)
|
| 171 |
+
|
| 172 |
print(f"Dataset saved to {output_path}")
|
| 173 |
print(f"Ready for HuggingFace upload!")
|
| 174 |
+
|
| 175 |
def save_as_json(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 176 |
"""Save chunks as JSON file."""
|
| 177 |
output_file = output_path / "dataset.json"
|
| 178 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 179 |
json.dump(chunks, f, indent=2, ensure_ascii=False)
|
| 180 |
print(f"Saved JSON: {output_file}")
|
| 181 |
+
|
| 182 |
def save_as_jsonl(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 183 |
"""Save chunks as JSONL file."""
|
| 184 |
output_file = output_path / "dataset.jsonl"
|
| 185 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 186 |
for chunk in chunks:
|
| 187 |
json.dump(chunk, f, ensure_ascii=False)
|
| 188 |
+
f.write("\n")
|
| 189 |
print(f"Saved JSONL: {output_file}")
|
| 190 |
+
|
| 191 |
def save_as_parquet(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 192 |
"""Save chunks as Parquet file."""
|
| 193 |
# Create minimal version for HF (only required fields)
|
| 194 |
hf_data = [
|
| 195 |
+
{"id": chunk["id"], "title": chunk["title"], "content": chunk["content"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
for chunk in chunks
|
| 197 |
]
|
| 198 |
+
|
| 199 |
df = pd.DataFrame(hf_data)
|
| 200 |
output_file = output_path / "dataset.parquet"
|
| 201 |
df.to_parquet(output_file, index=False)
|
| 202 |
print(f"Saved Parquet: {output_file}")
|
| 203 |
+
|
| 204 |
def save_as_csv(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 205 |
"""Save chunks as CSV file."""
|
| 206 |
df = pd.DataFrame(chunks)
|
| 207 |
output_file = output_path / "dataset.csv"
|
| 208 |
+
df.to_csv(output_file, index=False, encoding="utf-8")
|
| 209 |
print(f"Saved CSV: {output_file}")
|
| 210 |
+
|
| 211 |
def save_metadata(self, chunks: List[Dict[str, Any]], output_path: Path) -> None:
|
| 212 |
"""Save dataset metadata and statistics."""
|
| 213 |
metadata = {
|
|
|
|
| 217 |
"chunk_size_config": self.chunk_size,
|
| 218 |
"chunk_overlap_config": self.chunk_overlap,
|
| 219 |
"sources": list(set(chunk["source"] for chunk in chunks)),
|
| 220 |
+
"titles": list(set(chunk["title"] for chunk in chunks)),
|
| 221 |
}
|
| 222 |
+
|
| 223 |
metadata_file = output_path / "metadata.json"
|
| 224 |
+
with open(metadata_file, "w", encoding="utf-8") as f:
|
| 225 |
json.dump(metadata, f, indent=2, ensure_ascii=False)
|
| 226 |
print(f"Saved metadata: {metadata_file}")
|
| 227 |
|
| 228 |
+
|
| 229 |
if __name__ == "__main__":
|
| 230 |
"""Main function to run the converter."""
|
| 231 |
parser = argparse.ArgumentParser(description="Convert PDF files to HuggingFace dataset format")
|
| 232 |
parser.add_argument("--input_dir", "-i", required=True, help="Directory containing PDF files")
|
| 233 |
parser.add_argument("--output_dir", "-o", required=True, help="Output directory for dataset")
|
| 234 |
+
parser.add_argument(
|
| 235 |
+
"--format",
|
| 236 |
+
"-f",
|
| 237 |
+
default="parquet",
|
| 238 |
+
choices=["json", "jsonl", "parquet", "csv"],
|
| 239 |
+
help="Output format (default: parquet)",
|
| 240 |
+
)
|
| 241 |
+
parser.add_argument(
|
| 242 |
+
"--chunk_size",
|
| 243 |
+
"-c",
|
| 244 |
+
type=int,
|
| 245 |
+
default=1500,
|
| 246 |
+
help="Chunk size for text splitting (default: 1500)",
|
| 247 |
+
)
|
| 248 |
+
parser.add_argument(
|
| 249 |
+
"--chunk_overlap",
|
| 250 |
+
"-ol",
|
| 251 |
+
type=int,
|
| 252 |
+
default=300,
|
| 253 |
+
help="Chunk overlap for text splitting (default: 300)",
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
args = parser.parse_args()
|
| 257 |
+
|
| 258 |
# Create converter and process
|
| 259 |
+
converter = PDFToHFConverter(chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap)
|
|
|
|
|
|
|
|
|
|
| 260 |
converter.process_directory(
|
| 261 |
+
input_dir=args.input_dir, output_dir=args.output_dir, output_format=args.format
|
| 262 |
+
)
|
|
|
|
|
|