Emily Xie
commited on
Commit
·
b2aba7d
1
Parent(s):
c34de72
MedGemma fixes
Browse files
main.py
CHANGED
|
@@ -91,7 +91,7 @@ def initialize_agent(
|
|
| 91 |
"MedSAM2Tool": lambda: MedSAM2Tool(
|
| 92 |
device=device, cache_dir=model_dir, temp_dir=temp_dir
|
| 93 |
),
|
| 94 |
-
"MedGemmaVQATool": lambda: MedGemmaAPIClientTool(cache_dir=model_dir, device=device, api_url=MEDGEMMA_API_URL)
|
| 95 |
}
|
| 96 |
|
| 97 |
# Initialize only selected tools or all if none specified
|
|
@@ -184,9 +184,13 @@ if __name__ == "__main__":
|
|
| 184 |
# "PythonSandboxTool", # Add the Python sandbox tool
|
| 185 |
]
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
# Setup the MedGemma environment if the MedGemmaVQATool is selected
|
| 188 |
if "MedGemmaVQATool" in selected_tools:
|
| 189 |
-
setup_medgemma_env()
|
| 190 |
|
| 191 |
# Configure the Retrieval Augmented Generation (RAG) system
|
| 192 |
# This allows the agent to access and use medical knowledge documents
|
|
@@ -210,9 +214,9 @@ if __name__ == "__main__":
|
|
| 210 |
agent, tools_dict = initialize_agent(
|
| 211 |
prompt_file="medrax/docs/system_prompts.txt",
|
| 212 |
tools_to_use=selected_tools,
|
| 213 |
-
model_dir=
|
| 214 |
temp_dir="temp2", # Change this to the path of the temporary directory
|
| 215 |
-
device=
|
| 216 |
model="gpt-5", # Change this to the model you want to use, e.g. gpt-4.1-2025-04-14, gemini-2.5-pro, gpt-5
|
| 217 |
temperature=1.0,
|
| 218 |
model_kwargs=model_kwargs,
|
|
|
|
| 91 |
"MedSAM2Tool": lambda: MedSAM2Tool(
|
| 92 |
device=device, cache_dir=model_dir, temp_dir=temp_dir
|
| 93 |
),
|
| 94 |
+
"MedGemmaVQATool": lambda: MedGemmaAPIClientTool(cache_dir=model_dir, device=device, load_in_8bit=True, api_url=MEDGEMMA_API_URL)
|
| 95 |
}
|
| 96 |
|
| 97 |
# Initialize only selected tools or all if none specified
|
|
|
|
| 184 |
# "PythonSandboxTool", # Add the Python sandbox tool
|
| 185 |
]
|
| 186 |
|
| 187 |
+
# Share a single cache directory and device across tools
|
| 188 |
+
shared_model_dir = os.getenv("MODEL_WEIGHTS_DIR", "/model-weights")
|
| 189 |
+
shared_device = os.getenv("MEDRAX_DEVICE", "cuda:0")
|
| 190 |
+
|
| 191 |
# Setup the MedGemma environment if the MedGemmaVQATool is selected
|
| 192 |
if "MedGemmaVQATool" in selected_tools:
|
| 193 |
+
setup_medgemma_env(cache_dir=shared_model_dir, device=shared_device)
|
| 194 |
|
| 195 |
# Configure the Retrieval Augmented Generation (RAG) system
|
| 196 |
# This allows the agent to access and use medical knowledge documents
|
|
|
|
| 214 |
agent, tools_dict = initialize_agent(
|
| 215 |
prompt_file="medrax/docs/system_prompts.txt",
|
| 216 |
tools_to_use=selected_tools,
|
| 217 |
+
model_dir=shared_model_dir,
|
| 218 |
temp_dir="temp2", # Change this to the path of the temporary directory
|
| 219 |
+
device=shared_device,
|
| 220 |
model="gpt-5", # Change this to the model you want to use, e.g. gpt-4.1-2025-04-14, gemini-2.5-pro, gpt-5
|
| 221 |
temperature=1.0,
|
| 222 |
model_kwargs=model_kwargs,
|
medrax/tools/vqa/medgemma/medgemma.py
CHANGED
|
@@ -98,7 +98,7 @@ class MedGemmaModel:
|
|
| 98 |
device: Optional[str] = "cuda",
|
| 99 |
dtype: torch.dtype = torch.bfloat16,
|
| 100 |
cache_dir: Optional[str] = None,
|
| 101 |
-
|
| 102 |
**kwargs: Any,
|
| 103 |
) -> None:
|
| 104 |
"""Initialize the MedGemmaModel.
|
|
@@ -108,7 +108,7 @@ class MedGemmaModel:
|
|
| 108 |
device: Device to run model on - "cuda" or "cpu" (default: "cuda")
|
| 109 |
dtype: Data type for model weights - bfloat16 recommended for efficiency (default: torch.bfloat16)
|
| 110 |
cache_dir: Directory to cache downloaded models (default: None)
|
| 111 |
-
|
| 112 |
**kwargs: Additional arguments passed to the model pipeline
|
| 113 |
|
| 114 |
Raises:
|
|
@@ -138,8 +138,8 @@ class MedGemmaModel:
|
|
| 138 |
"use_cache": True,
|
| 139 |
}
|
| 140 |
|
| 141 |
-
if
|
| 142 |
-
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
| 143 |
model_kwargs["device_map"] = {"": self.device}
|
| 144 |
|
| 145 |
try:
|
|
@@ -288,6 +288,7 @@ app = FastAPI(
|
|
| 288 |
)
|
| 289 |
|
| 290 |
medgemma_model: Optional[MedGemmaModel] = None
|
|
|
|
| 291 |
|
| 292 |
@app.on_event("startup")
|
| 293 |
async def startup_event():
|
|
@@ -306,7 +307,32 @@ async def startup_event():
|
|
| 306 |
"""
|
| 307 |
global medgemma_model
|
| 308 |
try:
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
print("MedGemma model loaded successfully.")
|
| 311 |
except RuntimeError as e:
|
| 312 |
print(f"Error loading MedGemma model: {e}")
|
|
@@ -379,8 +405,12 @@ async def analyze_images(
|
|
| 379 |
raise HTTPException(status_code=500, detail=f"Failed to save uploaded image: {str(e)}")
|
| 380 |
|
| 381 |
try:
|
| 382 |
-
# Generate AI analysis
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
# Prepare success response
|
| 386 |
metadata = {
|
|
|
|
| 98 |
device: Optional[str] = "cuda",
|
| 99 |
dtype: torch.dtype = torch.bfloat16,
|
| 100 |
cache_dir: Optional[str] = None,
|
| 101 |
+
load_in_8bit: bool = True,
|
| 102 |
**kwargs: Any,
|
| 103 |
) -> None:
|
| 104 |
"""Initialize the MedGemmaModel.
|
|
|
|
| 108 |
device: Device to run model on - "cuda" or "cpu" (default: "cuda")
|
| 109 |
dtype: Data type for model weights - bfloat16 recommended for efficiency (default: torch.bfloat16)
|
| 110 |
cache_dir: Directory to cache downloaded models (default: None)
|
| 111 |
+
load_in_8bit: Whether to load model in 4-bit quantization for memory efficiency (default: True)
|
| 112 |
**kwargs: Additional arguments passed to the model pipeline
|
| 113 |
|
| 114 |
Raises:
|
|
|
|
| 138 |
"use_cache": True,
|
| 139 |
}
|
| 140 |
|
| 141 |
+
if load_in_8bit:
|
| 142 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
| 143 |
model_kwargs["device_map"] = {"": self.device}
|
| 144 |
|
| 145 |
try:
|
|
|
|
| 288 |
)
|
| 289 |
|
| 290 |
medgemma_model: Optional[MedGemmaModel] = None
|
| 291 |
+
inference_semaphore: Optional[asyncio.Semaphore] = None
|
| 292 |
|
| 293 |
@app.on_event("startup")
|
| 294 |
async def startup_event():
|
|
|
|
| 307 |
"""
|
| 308 |
global medgemma_model
|
| 309 |
try:
|
| 310 |
+
# Allow overriding Hugging Face cache directory and device via env vars
|
| 311 |
+
cache_dir_env = os.getenv("MEDGEMMA_CACHE_DIR")
|
| 312 |
+
device_env = os.getenv("MEDGEMMA_DEVICE")
|
| 313 |
+
max_concurrency_env = os.getenv("MEDGEMMA_MAX_CONCURRENCY", "1")
|
| 314 |
+
|
| 315 |
+
# Ensure the cache directory is writable; if not, fall back to a user cache
|
| 316 |
+
if cache_dir_env:
|
| 317 |
+
try:
|
| 318 |
+
os.makedirs(cache_dir_env, exist_ok=True)
|
| 319 |
+
if not os.access(cache_dir_env, os.W_OK):
|
| 320 |
+
raise PermissionError("Cache dir not writable")
|
| 321 |
+
except Exception:
|
| 322 |
+
fallback = os.path.join(Path.home(), ".cache", "medrax", "medgemma")
|
| 323 |
+
os.makedirs(fallback, exist_ok=True)
|
| 324 |
+
print(f"Warning: MEDGEMMA_CACHE_DIR '{cache_dir_env}' not writable. Falling back to '{fallback}'.")
|
| 325 |
+
cache_dir_env = fallback
|
| 326 |
+
|
| 327 |
+
medgemma_model = MedGemmaModel(cache_dir=cache_dir_env, device=device_env)
|
| 328 |
+
# Initialize concurrency gate
|
| 329 |
+
try:
|
| 330 |
+
max_concurrency = int(max_concurrency_env)
|
| 331 |
+
except ValueError:
|
| 332 |
+
max_concurrency = 1
|
| 333 |
+
max_concurrency = max(1, max_concurrency)
|
| 334 |
+
global inference_semaphore
|
| 335 |
+
inference_semaphore = asyncio.Semaphore(max_concurrency)
|
| 336 |
print("MedGemma model loaded successfully.")
|
| 337 |
except RuntimeError as e:
|
| 338 |
print(f"Error loading MedGemma model: {e}")
|
|
|
|
| 405 |
raise HTTPException(status_code=500, detail=f"Failed to save uploaded image: {str(e)}")
|
| 406 |
|
| 407 |
try:
|
| 408 |
+
# Generate AI analysis with concurrency gating to avoid GPU contention timeouts
|
| 409 |
+
global inference_semaphore
|
| 410 |
+
if inference_semaphore is None:
|
| 411 |
+
inference_semaphore = asyncio.Semaphore(1)
|
| 412 |
+
async with inference_semaphore:
|
| 413 |
+
response_text = await medgemma_model.aget_response(image_paths, prompt, system_prompt, max_new_tokens)
|
| 414 |
|
| 415 |
# Prepare success response
|
| 416 |
metadata = {
|
medrax/tools/vqa/medgemma/medgemma_client.py
CHANGED
|
@@ -59,15 +59,21 @@ class MedGemmaAPIClientTool(BaseTool):
|
|
| 59 |
|
| 60 |
# API configuration
|
| 61 |
api_url: str # The URL of the running FastAPI service
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
def __init__(self, api_url: str, **kwargs: Any):
|
| 64 |
"""Initialize the MedGemmaAPIClientTool.
|
| 65 |
|
| 66 |
Args:
|
| 67 |
api_url: The URL of the running MedGemma FastAPI service
|
|
|
|
|
|
|
|
|
|
| 68 |
**kwargs: Additional arguments passed to BaseTool
|
| 69 |
"""
|
| 70 |
-
super().__init__(api_url=api_url, **kwargs)
|
|
|
|
| 71 |
|
| 72 |
def _prepare_request_data(
|
| 73 |
self, image_paths: List[str], prompt: str, system_prompt: str, max_new_tokens: int
|
|
@@ -149,7 +155,8 @@ class MedGemmaAPIClientTool(BaseTool):
|
|
| 149 |
Tuple of output dictionary and metadata
|
| 150 |
"""
|
| 151 |
# httpx is a modern HTTP client that supports sync and async
|
| 152 |
-
|
|
|
|
| 153 |
client = httpx.Client(timeout=timeout_config)
|
| 154 |
|
| 155 |
try:
|
|
@@ -233,11 +240,12 @@ class MedGemmaAPIClientTool(BaseTool):
|
|
| 233 |
image_paths, prompt, system_prompt, max_new_tokens
|
| 234 |
)
|
| 235 |
|
|
|
|
| 236 |
response = await client.post(
|
| 237 |
f"{self.api_url}/analyze-images/",
|
| 238 |
data=data,
|
| 239 |
files=files_to_send,
|
| 240 |
-
timeout=
|
| 241 |
)
|
| 242 |
response.raise_for_status()
|
| 243 |
|
|
|
|
| 59 |
|
| 60 |
# API configuration
|
| 61 |
api_url: str # The URL of the running FastAPI service
|
| 62 |
+
cache_dir: Optional[str] = None # Not used by the client directly, but accepted to keep a uniform constructor
|
| 63 |
+
device: Optional[str] = None
|
| 64 |
|
| 65 |
+
def __init__(self, api_url: str, cache_dir: Optional[str] = None, device: Optional[str] = None, timeout_seconds: Optional[float] = None, **kwargs: Any):
|
| 66 |
"""Initialize the MedGemmaAPIClientTool.
|
| 67 |
|
| 68 |
Args:
|
| 69 |
api_url: The URL of the running MedGemma FastAPI service
|
| 70 |
+
cache_dir: Optional local cache directory for model weights (accepted for interface consistency)
|
| 71 |
+
device: Optional device spec (accepted for interface consistency)
|
| 72 |
+
timeout_seconds: Optional request timeout override (seconds)
|
| 73 |
**kwargs: Additional arguments passed to BaseTool
|
| 74 |
"""
|
| 75 |
+
super().__init__(api_url=api_url, cache_dir=cache_dir, device=device, **kwargs)
|
| 76 |
+
self._timeout_seconds = timeout_seconds
|
| 77 |
|
| 78 |
def _prepare_request_data(
|
| 79 |
self, image_paths: List[str], prompt: str, system_prompt: str, max_new_tokens: int
|
|
|
|
| 155 |
Tuple of output dictionary and metadata
|
| 156 |
"""
|
| 157 |
# httpx is a modern HTTP client that supports sync and async
|
| 158 |
+
timeout_value = self._timeout_seconds if self._timeout_seconds is not None else 600.0
|
| 159 |
+
timeout_config = httpx.Timeout(timeout_value, connect=10.0)
|
| 160 |
client = httpx.Client(timeout=timeout_config)
|
| 161 |
|
| 162 |
try:
|
|
|
|
| 240 |
image_paths, prompt, system_prompt, max_new_tokens
|
| 241 |
)
|
| 242 |
|
| 243 |
+
timeout_value = self._timeout_seconds if self._timeout_seconds is not None else 600.0
|
| 244 |
response = await client.post(
|
| 245 |
f"{self.api_url}/analyze-images/",
|
| 246 |
data=data,
|
| 247 |
files=files_to_send,
|
| 248 |
+
timeout=timeout_value
|
| 249 |
)
|
| 250 |
response.raise_for_status()
|
| 251 |
|
medrax/tools/vqa/medgemma/medgemma_setup.py
CHANGED
|
@@ -3,7 +3,23 @@ from pathlib import Path
|
|
| 3 |
import subprocess
|
| 4 |
import venv
|
| 5 |
|
| 6 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""Set up MedGemma virtual environment and launch the FastAPI service.
|
| 8 |
|
| 9 |
This function performs the following steps:
|
|
@@ -55,10 +71,15 @@ def setup_medgemma_env():
|
|
| 55 |
|
| 56 |
# Launch MedGemma FastAPI service
|
| 57 |
print("Launching MedGemma FastAPI service...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
subprocess.Popen([
|
| 59 |
str(python_executable),
|
| 60 |
str(medgemma_path)
|
| 61 |
-
])
|
| 62 |
# Note: stdout and stderr redirection commented out for debugging
|
| 63 |
# stdout=subprocess.DEVNULL,
|
| 64 |
# stderr=subprocess.DEVNULL,
|
|
|
|
| 3 |
import subprocess
|
| 4 |
import venv
|
| 5 |
|
| 6 |
+
def _resolve_writable_cache_dir(preferred: str | None) -> str:
|
| 7 |
+
"""Return a writable cache directory, falling back to user cache if needed."""
|
| 8 |
+
# Preferred path first
|
| 9 |
+
if preferred:
|
| 10 |
+
try:
|
| 11 |
+
os.makedirs(preferred, exist_ok=True)
|
| 12 |
+
if os.access(preferred, os.W_OK):
|
| 13 |
+
return preferred
|
| 14 |
+
except Exception:
|
| 15 |
+
pass
|
| 16 |
+
# Fallback path under user's home
|
| 17 |
+
fallback = os.path.join(Path.home(), ".cache", "medrax", "medgemma")
|
| 18 |
+
os.makedirs(fallback, exist_ok=True)
|
| 19 |
+
return fallback
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def setup_medgemma_env(cache_dir: str | None = None, device: str | None = None):
|
| 23 |
"""Set up MedGemma virtual environment and launch the FastAPI service.
|
| 24 |
|
| 25 |
This function performs the following steps:
|
|
|
|
| 71 |
|
| 72 |
# Launch MedGemma FastAPI service
|
| 73 |
print("Launching MedGemma FastAPI service...")
|
| 74 |
+
env = os.environ.copy()
|
| 75 |
+
resolved_cache = _resolve_writable_cache_dir(cache_dir)
|
| 76 |
+
env["MEDGEMMA_CACHE_DIR"] = resolved_cache
|
| 77 |
+
if device:
|
| 78 |
+
env["MEDGEMMA_DEVICE"] = device
|
| 79 |
subprocess.Popen([
|
| 80 |
str(python_executable),
|
| 81 |
str(medgemma_path)
|
| 82 |
+
], env=env)
|
| 83 |
# Note: stdout and stderr redirection commented out for debugging
|
| 84 |
# stdout=subprocess.DEVNULL,
|
| 85 |
# stderr=subprocess.DEVNULL,
|