Junzhe Li
commited on
Commit
·
dba3d2e
1
Parent(s):
e4e9fae
yes
Browse files- 2rexvqa.sh +15 -0
- analyze.py +147 -0
- benchmarking/cli.py +1 -1
- benchmarking/llm_providers/medgemma_provider.py +12 -34
- benchmarking/llm_providers/medrax_provider.py +6 -6
- benchmarking/system_prompts.txt +6 -1
- chestagentbench_script.sh +1 -1
- medgemma_script.sh +3 -1
- rexvqa_script.sh +2 -2
2rexvqa.sh
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
#SBATCH --job-name=medrax
|
| 4 |
+
#SBATCH -c 4
|
| 5 |
+
#SBATCH --gres=gpu:l40s:1
|
| 6 |
+
#SBATCH --time=16:00:00
|
| 7 |
+
#SBATCH --mem=50G
|
| 8 |
+
#SBATCH --output=rexvqa-%j.out
|
| 9 |
+
#SBATCH --error=rexvqa-%j.err
|
| 10 |
+
|
| 11 |
+
module load arrow clang/18.1.8 scipy-stack
|
| 12 |
+
|
| 13 |
+
source venv/bin/activate
|
| 14 |
+
|
| 15 |
+
/scratch/lijunzh3/MedRAX2/venv/bin/python -m benchmarking.cli run --benchmark rexvqa --provider medrax --model gemini-2.5-pro --system-prompt CHESTAGENTBENCH_PROMPT --data-dir benchmarking/data/rexvqa --output-dir temp --max-questions 200 --temperature 0.7 --top-p 0.95 --max-tokens 10000 --concurrency 4 --random-seed 42
|
analyze.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import argparse
|
| 3 |
+
import sys
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
def process_single_file(json_file_path):
|
| 8 |
+
"""
|
| 9 |
+
Processes a single JSON results file and returns its accuracy counts.
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
json_file_path (Path): Path to the ...results.json file.
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
defaultdict: A dictionary with the aggregated counts for this file.
|
| 16 |
+
Returns None if the file cannot be processed.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
# These counts are *only* for the file being processed
|
| 20 |
+
counts = defaultdict(lambda: defaultdict(lambda: {"total": 0, "correct": 0}))
|
| 21 |
+
keys_to_track = ["reasoning_type", "category", "class", "subcategory"]
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
with open(json_file_path, 'r', encoding='utf-8') as f:
|
| 25 |
+
data = json.load(f)
|
| 26 |
+
except json.JSONDecodeError:
|
| 27 |
+
print(f" - WARNING: Could not decode JSON from '{json_file_path}'. Skipping.")
|
| 28 |
+
return None
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f" - ERROR: Unexpected error loading '{json_file_path}': {e}. Skipping.")
|
| 31 |
+
return None
|
| 32 |
+
|
| 33 |
+
# Iterate through each record in the JSON array
|
| 34 |
+
for record in data:
|
| 35 |
+
try:
|
| 36 |
+
is_correct = record.get("is_correct", False)
|
| 37 |
+
metadata = record["metadata"]["data_point_metadata"]
|
| 38 |
+
|
| 39 |
+
for key in keys_to_track:
|
| 40 |
+
value = metadata.get(key)
|
| 41 |
+
|
| 42 |
+
if value is not None:
|
| 43 |
+
counts[key][value]["total"] += 1
|
| 44 |
+
if is_correct:
|
| 45 |
+
counts[key][value]["correct"] += 1
|
| 46 |
+
|
| 47 |
+
except KeyError as e:
|
| 48 |
+
print(f" - WARNING: Record {record.get('data_point_id')} is missing expected key: {e}. Skipping record.")
|
| 49 |
+
except TypeError:
|
| 50 |
+
print(f" - WARNING: Record {record.get('data_point_id')} has unexpected data structure. Skipping record.")
|
| 51 |
+
|
| 52 |
+
return counts
|
| 53 |
+
|
| 54 |
+
def generate_report_dict(counts):
|
| 55 |
+
"""
|
| 56 |
+
Converts a counts dictionary into the final, formatted report dictionary.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
counts (defaultdict): The aggregated counts from process_single_file.
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
dict: A dictionary formatted with percentages and absolute numbers.
|
| 63 |
+
"""
|
| 64 |
+
accuracy_report = defaultdict(dict)
|
| 65 |
+
|
| 66 |
+
for key, values in counts.items():
|
| 67 |
+
# Sort by the sub-category name (e.g., "Negation Assessment")
|
| 68 |
+
sorted_values = sorted(values.items(), key=lambda item: item[0])
|
| 69 |
+
|
| 70 |
+
for value, tally in sorted_values:
|
| 71 |
+
total = tally["total"]
|
| 72 |
+
correct = tally["correct"]
|
| 73 |
+
|
| 74 |
+
if total > 0:
|
| 75 |
+
accuracy = (correct / total) * 100
|
| 76 |
+
else:
|
| 77 |
+
accuracy = 0.0
|
| 78 |
+
|
| 79 |
+
# Store the full results in our report dictionary
|
| 80 |
+
accuracy_report[key][value] = {
|
| 81 |
+
"accuracy_percent": round(accuracy, 2),
|
| 82 |
+
"correct": correct,
|
| 83 |
+
"total": total
|
| 84 |
+
}
|
| 85 |
+
return accuracy_report
|
| 86 |
+
|
| 87 |
+
def main():
|
| 88 |
+
"""
|
| 89 |
+
Main function to find, process, and save individual reports.
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
parser = argparse.ArgumentParser(
|
| 93 |
+
description="Finds and processes individual benchmarking runs, saving "
|
| 94 |
+
"a separate accuracy report for each run."
|
| 95 |
+
)
|
| 96 |
+
parser.add_argument(
|
| 97 |
+
"directory",
|
| 98 |
+
type=str,
|
| 99 |
+
help="The top-level directory to search within (e.g., 'my_experiments')."
|
| 100 |
+
)
|
| 101 |
+
args = parser.parse_args()
|
| 102 |
+
|
| 103 |
+
top_dir = Path(args.directory)
|
| 104 |
+
if not top_dir.is_dir():
|
| 105 |
+
print(f"Error: Path '{args.directory}' is not a valid directory.")
|
| 106 |
+
sys.exit(1)
|
| 107 |
+
|
| 108 |
+
# Glob pattern to find all target files
|
| 109 |
+
search_pattern = '*/final_results/*results.json'
|
| 110 |
+
json_files_to_process = list(top_dir.glob(search_pattern))
|
| 111 |
+
|
| 112 |
+
if not json_files_to_process:
|
| 113 |
+
print(f"No files matching the pattern '{search_pattern}' were found in '{top_dir}'.")
|
| 114 |
+
sys.exit(0)
|
| 115 |
+
|
| 116 |
+
print(f"Found {len(json_files_to_process)} result file(s) to process individually.")
|
| 117 |
+
|
| 118 |
+
# --- Loop and process each file ---
|
| 119 |
+
for file_path in json_files_to_process:
|
| 120 |
+
# Use relative path for cleaner logging
|
| 121 |
+
print(f"\n--- Processing: {file_path.relative_to(top_dir.parent)} ---")
|
| 122 |
+
|
| 123 |
+
# 1. Get counts for this file
|
| 124 |
+
counts = process_single_file(file_path)
|
| 125 |
+
|
| 126 |
+
if counts is None or not counts:
|
| 127 |
+
print(" - No data processed. Skipping report generation.")
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
# 2. Generate the report dictionary
|
| 131 |
+
report = generate_report_dict(counts)
|
| 132 |
+
|
| 133 |
+
# 3. Determine the output path and save the file
|
| 134 |
+
# The output is saved in the *same directory* as the input file
|
| 135 |
+
output_filename = file_path.parent / "accuracy_report.json"
|
| 136 |
+
|
| 137 |
+
try:
|
| 138 |
+
with open(output_filename, 'w', encoding='utf-8') as f:
|
| 139 |
+
json.dump(report, f, indent=2, sort_keys=True)
|
| 140 |
+
print(f" > Successfully saved report to: {output_filename.relative_to(top_dir.parent)}")
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f" > ERROR: Could not save report to '{output_filename}': {e}")
|
| 143 |
+
|
| 144 |
+
print("\nAll processing complete.")
|
| 145 |
+
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
main()
|
benchmarking/cli.py
CHANGED
|
@@ -118,7 +118,7 @@ def main():
|
|
| 118 |
run_parser.add_argument("--model", required=True,
|
| 119 |
help="Model name (e.g., gpt-4o, gpt-4.1-2025-04-14, gemini-2.5-pro)")
|
| 120 |
run_parser.add_argument("--system-prompt", required=True,
|
| 121 |
-
choices=["MEDICAL_ASSISTANT", "CHESTAGENTBENCH_PROMPT"],
|
| 122 |
help="System prompt: MEDICAL_ASSISTANT (general) or CHESTAGENTBENCH_PROMPT (benchmarks)")
|
| 123 |
run_parser.add_argument("--data-dir", required=True,
|
| 124 |
help="Directory containing benchmark data files")
|
|
|
|
| 118 |
run_parser.add_argument("--model", required=True,
|
| 119 |
help="Model name (e.g., gpt-4o, gpt-4.1-2025-04-14, gemini-2.5-pro)")
|
| 120 |
run_parser.add_argument("--system-prompt", required=True,
|
| 121 |
+
choices=["MEDICAL_ASSISTANT", "CHESTAGENTBENCH_PROMPT", "MEDGEMMA_PROMPT"],
|
| 122 |
help="System prompt: MEDICAL_ASSISTANT (general) or CHESTAGENTBENCH_PROMPT (benchmarks)")
|
| 123 |
run_parser.add_argument("--data-dir", required=True,
|
| 124 |
help="Directory containing benchmark data files")
|
benchmarking/llm_providers/medgemma_provider.py
CHANGED
|
@@ -3,8 +3,6 @@
|
|
| 3 |
import os
|
| 4 |
import time
|
| 5 |
import httpx
|
| 6 |
-
from typing import Optional
|
| 7 |
-
from pathlib import Path
|
| 8 |
from tenacity import retry, wait_exponential, stop_after_attempt
|
| 9 |
|
| 10 |
from .base import LLMProvider, LLMRequest, LLMResponse
|
|
@@ -36,9 +34,8 @@ class MedGemmaProvider(LLMProvider):
|
|
| 36 |
- api_url: URL of the MedGemma FastAPI service
|
| 37 |
- max_new_tokens: Maximum tokens to generate (default: 300)
|
| 38 |
"""
|
| 39 |
-
|
| 40 |
-
self.api_url =
|
| 41 |
-
self.max_new_tokens = kwargs.pop('max_new_tokens', 300)
|
| 42 |
self.client = None
|
| 43 |
|
| 44 |
# Call parent constructor
|
|
@@ -52,16 +49,6 @@ class MedGemmaProvider(LLMProvider):
|
|
| 52 |
connect=10.0 # 10 seconds to establish connection
|
| 53 |
)
|
| 54 |
self.client = httpx.Client(timeout=timeout_config)
|
| 55 |
-
|
| 56 |
-
# Test connection to MedGemma service
|
| 57 |
-
try:
|
| 58 |
-
response = self.client.get(f"{self.api_url}/docs")
|
| 59 |
-
if response.status_code != 200:
|
| 60 |
-
print(f"Warning: MedGemma API at {self.api_url} may not be running (status: {response.status_code})")
|
| 61 |
-
except httpx.ConnectError:
|
| 62 |
-
print(f"Warning: Could not connect to MedGemma API at {self.api_url}")
|
| 63 |
-
print("Please ensure the MedGemma FastAPI service is running:")
|
| 64 |
-
print(f" python medrax/tools/vqa/medgemma/medgemma.py")
|
| 65 |
|
| 66 |
@retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3))
|
| 67 |
def generate_response(self, request: LLMRequest) -> LLMResponse:
|
|
@@ -100,14 +87,13 @@ class MedGemmaProvider(LLMProvider):
|
|
| 100 |
files_to_send = []
|
| 101 |
for image_path in valid_images:
|
| 102 |
try:
|
| 103 |
-
# Detect correct MIME type based on file extension
|
| 104 |
-
ext = Path(image_path).suffix.lower()
|
| 105 |
-
mime_type = "image/png" if ext == ".png" else "image/jpeg"
|
| 106 |
-
|
| 107 |
# Read image file
|
| 108 |
with open(image_path, "rb") as f:
|
| 109 |
image_data = f.read()
|
| 110 |
|
|
|
|
|
|
|
|
|
|
| 111 |
# Add to files list
|
| 112 |
files_to_send.append(
|
| 113 |
("images", (os.path.basename(image_path), image_data, mime_type))
|
|
@@ -122,17 +108,14 @@ class MedGemmaProvider(LLMProvider):
|
|
| 122 |
duration=time.time() - start_time
|
| 123 |
)
|
| 124 |
|
| 125 |
-
# Prepare form data
|
| 126 |
# Use system_prompt if provided, otherwise use default
|
| 127 |
system_prompt_text = self.system_prompt if self.system_prompt else "You are an expert radiologist who is able to analyze radiological images at any resolution."
|
| 128 |
|
| 129 |
-
#
|
| 130 |
-
max_tokens = getattr(request, 'max_tokens', self.max_new_tokens)
|
| 131 |
-
|
| 132 |
data = {
|
| 133 |
"prompt": request.text,
|
| 134 |
"system_prompt": system_prompt_text,
|
| 135 |
-
"max_new_tokens": max_tokens,
|
| 136 |
}
|
| 137 |
|
| 138 |
# Make API request
|
|
@@ -148,19 +131,14 @@ class MedGemmaProvider(LLMProvider):
|
|
| 148 |
# Parse response
|
| 149 |
response_data = response.json()
|
| 150 |
content = response_data.get("response", "")
|
| 151 |
-
metadata = response_data.get("metadata", {})
|
| 152 |
|
|
|
|
| 153 |
duration = time.time() - start_time
|
| 154 |
-
|
| 155 |
-
#
|
| 156 |
-
usage = {
|
| 157 |
-
"num_images": len(valid_images),
|
| 158 |
-
"max_new_tokens": max_tokens,
|
| 159 |
-
}
|
| 160 |
-
|
| 161 |
return LLMResponse(
|
| 162 |
content=content,
|
| 163 |
-
usage=
|
| 164 |
duration=duration
|
| 165 |
)
|
| 166 |
|
|
@@ -199,7 +177,7 @@ class MedGemmaProvider(LLMProvider):
|
|
| 199 |
content=f"Error: {error_msg}",
|
| 200 |
duration=duration
|
| 201 |
)
|
| 202 |
-
|
| 203 |
def test_connection(self) -> bool:
|
| 204 |
"""Test the connection to the MedGemma API service.
|
| 205 |
|
|
|
|
| 3 |
import os
|
| 4 |
import time
|
| 5 |
import httpx
|
|
|
|
|
|
|
| 6 |
from tenacity import retry, wait_exponential, stop_after_attempt
|
| 7 |
|
| 8 |
from .base import LLMProvider, LLMRequest, LLMResponse
|
|
|
|
| 34 |
- api_url: URL of the MedGemma FastAPI service
|
| 35 |
- max_new_tokens: Maximum tokens to generate (default: 300)
|
| 36 |
"""
|
| 37 |
+
self.provider_name = "medgemma"
|
| 38 |
+
self.api_url = "http://kn132.paice.vectorinstitute.ai:8002"
|
|
|
|
| 39 |
self.client = None
|
| 40 |
|
| 41 |
# Call parent constructor
|
|
|
|
| 49 |
connect=10.0 # 10 seconds to establish connection
|
| 50 |
)
|
| 51 |
self.client = httpx.Client(timeout=timeout_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
@retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3))
|
| 54 |
def generate_response(self, request: LLMRequest) -> LLMResponse:
|
|
|
|
| 87 |
files_to_send = []
|
| 88 |
for image_path in valid_images:
|
| 89 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
# Read image file
|
| 91 |
with open(image_path, "rb") as f:
|
| 92 |
image_data = f.read()
|
| 93 |
|
| 94 |
+
# Detect correct MIME type based on file extension
|
| 95 |
+
mime_type = self._get_image_mime_type(image_path)
|
| 96 |
+
|
| 97 |
# Add to files list
|
| 98 |
files_to_send.append(
|
| 99 |
("images", (os.path.basename(image_path), image_data, mime_type))
|
|
|
|
| 108 |
duration=time.time() - start_time
|
| 109 |
)
|
| 110 |
|
|
|
|
| 111 |
# Use system_prompt if provided, otherwise use default
|
| 112 |
system_prompt_text = self.system_prompt if self.system_prompt else "You are an expert radiologist who is able to analyze radiological images at any resolution."
|
| 113 |
|
| 114 |
+
# Prepare form data
|
|
|
|
|
|
|
| 115 |
data = {
|
| 116 |
"prompt": request.text,
|
| 117 |
"system_prompt": system_prompt_text,
|
| 118 |
+
"max_new_tokens": self.max_tokens,
|
| 119 |
}
|
| 120 |
|
| 121 |
# Make API request
|
|
|
|
| 131 |
# Parse response
|
| 132 |
response_data = response.json()
|
| 133 |
content = response_data.get("response", "")
|
|
|
|
| 134 |
|
| 135 |
+
# record duration
|
| 136 |
duration = time.time() - start_time
|
| 137 |
+
|
| 138 |
+
# return response object
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
return LLMResponse(
|
| 140 |
content=content,
|
| 141 |
+
usage=None,
|
| 142 |
duration=duration
|
| 143 |
)
|
| 144 |
|
|
|
|
| 177 |
content=f"Error: {error_msg}",
|
| 178 |
duration=duration
|
| 179 |
)
|
| 180 |
+
|
| 181 |
def test_connection(self) -> bool:
|
| 182 |
"""Test the connection to the MedGemma API service.
|
| 183 |
|
benchmarking/llm_providers/medrax_provider.py
CHANGED
|
@@ -37,14 +37,14 @@ class MedRAXProvider(LLMProvider):
|
|
| 37 |
print("Starting server...")
|
| 38 |
|
| 39 |
selected_tools = [
|
| 40 |
-
"TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
|
| 41 |
-
"ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
|
| 42 |
-
"ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
| 43 |
# "XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 44 |
"MedGemmaVQATool", # Google MedGemma VQA tool
|
| 45 |
-
"MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 46 |
-
"WebBrowserTool", # For web browsing and search capabilities
|
| 47 |
-
"DuckDuckGoSearchTool", # For privacy-focused web search using DuckDuckGo
|
| 48 |
]
|
| 49 |
|
| 50 |
rag_config = RAGConfig(
|
|
|
|
| 37 |
print("Starting server...")
|
| 38 |
|
| 39 |
selected_tools = [
|
| 40 |
+
# "TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
|
| 41 |
+
# "ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
|
| 42 |
+
# "ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
|
| 43 |
# "XRayPhraseGroundingTool", # For locating described features in X-rays
|
| 44 |
"MedGemmaVQATool", # Google MedGemma VQA tool
|
| 45 |
+
# "MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
|
| 46 |
+
# "WebBrowserTool", # For web browsing and search capabilities
|
| 47 |
+
# "DuckDuckGoSearchTool", # For privacy-focused web search using DuckDuckGo
|
| 48 |
]
|
| 49 |
|
| 50 |
rag_config = RAGConfig(
|
benchmarking/system_prompts.txt
CHANGED
|
@@ -33,4 +33,9 @@ Your final response for a multiple-choice question must strictly follow this for
|
|
| 33 |
3. **Critical Thinking & Tool Use:** [Show your reasoning, including how you used tools and evaluated their output]
|
| 34 |
4. **Final Answer:** \boxed{A}
|
| 35 |
|
| 36 |
-
Do not provide a definitive diagnosis or treatment plan for a patient. Your purpose is to assist medical professionals with your analysis, not to replace them. You must maintain this persona and adhere to all instructions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
3. **Critical Thinking & Tool Use:** [Show your reasoning, including how you used tools and evaluated their output]
|
| 34 |
4. **Final Answer:** \boxed{A}
|
| 35 |
|
| 36 |
+
Do not provide a definitive diagnosis or treatment plan for a patient. Your purpose is to assist medical professionals with your analysis, not to replace them. You must maintain this persona and adhere to all instructions.
|
| 37 |
+
|
| 38 |
+
[MEDGEMMA_PROMPT]
|
| 39 |
+
You are an expert in interpreting medical images and able to analyze medical images of any resolution, specifically chest X-rays, CT scans, and MRIs, with world-class accuracy and precision.
|
| 40 |
+
|
| 41 |
+
Your final response for a multiple-choice question must strictly follow this boxed format for providing the final answer: **Final Answer:** \boxed{A}
|
chestagentbench_script.sh
CHANGED
|
@@ -12,4 +12,4 @@ module load arrow clang/18.1.8 scipy-stack
|
|
| 12 |
|
| 13 |
source venv/bin/activate
|
| 14 |
|
| 15 |
-
/scratch/lijunzh3/MedRAX2/venv/bin/python -m benchmarking.cli run --benchmark chestagentbench --provider
|
|
|
|
| 12 |
|
| 13 |
source venv/bin/activate
|
| 14 |
|
| 15 |
+
/scratch/lijunzh3/MedRAX2/venv/bin/python -m benchmarking.cli run --benchmark chestagentbench --provider medrax --model gemini-2.5-pro --system-prompt CHESTAGENTBENCH_PROMPT --data-dir benchmarking/data/chestagentbench --output-dir temp --max-questions 500 --temperature 0.7 --top-p 0.95 --max-tokens 10000 --concurrency 4 --random-seed 42
|
medgemma_script.sh
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
-
#SBATCH --job-name=
|
| 4 |
#SBATCH -c 4
|
| 5 |
#SBATCH --gres=gpu:l40s:1
|
| 6 |
#SBATCH --time=16:00:00
|
|
@@ -8,6 +8,8 @@
|
|
| 8 |
#SBATCH --output=medgemma-%j.out
|
| 9 |
#SBATCH --error=medgemma-%j.err
|
| 10 |
|
|
|
|
|
|
|
| 11 |
cd medrax/tools/vqa/medgemma
|
| 12 |
|
| 13 |
source medgemma/bin/activate
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
+
#SBATCH --job-name=medgemma3
|
| 4 |
#SBATCH -c 4
|
| 5 |
#SBATCH --gres=gpu:l40s:1
|
| 6 |
#SBATCH --time=16:00:00
|
|
|
|
| 8 |
#SBATCH --output=medgemma-%j.out
|
| 9 |
#SBATCH --error=medgemma-%j.err
|
| 10 |
|
| 11 |
+
export MEDGEMMA_DEVICE=cuda
|
| 12 |
+
|
| 13 |
cd medrax/tools/vqa/medgemma
|
| 14 |
|
| 15 |
source medgemma/bin/activate
|
rexvqa_script.sh
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
-
#SBATCH --job-name=
|
| 4 |
#SBATCH -c 4
|
| 5 |
#SBATCH --gres=gpu:l40s:1
|
| 6 |
#SBATCH --time=16:00:00
|
|
@@ -12,4 +12,4 @@ module load arrow clang/18.1.8 scipy-stack
|
|
| 12 |
|
| 13 |
source venv/bin/activate
|
| 14 |
|
| 15 |
-
/scratch/lijunzh3/MedRAX2/venv/bin/python -m benchmarking.cli run --benchmark rexvqa --provider
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
+
#SBATCH --job-name=medgemma_run2
|
| 4 |
#SBATCH -c 4
|
| 5 |
#SBATCH --gres=gpu:l40s:1
|
| 6 |
#SBATCH --time=16:00:00
|
|
|
|
| 12 |
|
| 13 |
source venv/bin/activate
|
| 14 |
|
| 15 |
+
/scratch/lijunzh3/MedRAX2/venv/bin/python -m benchmarking.cli run --benchmark rexvqa --provider medgemma --model medgemma-4b --system-prompt MEDGEMMA_PROMPT --data-dir benchmarking/data/rexvqa --output-dir temp --max-questions 200 --temperature 0.7 --top-p 0.95 --max-tokens 10000 --concurrency 4 --random-seed 100
|