added openrouter provider
Browse files
benchmarking/cli.py
CHANGED
|
@@ -22,6 +22,7 @@ def create_llm_provider(model_name: str, provider_type: str, **kwargs) -> LLMPro
|
|
| 22 |
provider_map = {
|
| 23 |
"openai": OpenAIProvider,
|
| 24 |
"google": GoogleProvider,
|
|
|
|
| 25 |
"medrax": MedRAXProvider,
|
| 26 |
}
|
| 27 |
|
|
@@ -112,14 +113,14 @@ def main():
|
|
| 112 |
# Run benchmark command
|
| 113 |
run_parser = subparsers.add_parser("run", help="Run a benchmark")
|
| 114 |
run_parser.add_argument("--model", required=True, help="Model name (e.g., gpt-4o, gemini-2.5-pro)")
|
| 115 |
-
run_parser.add_argument("--provider", required=True, choices=["openai", "google", "medrax"], help="LLM provider")
|
| 116 |
run_parser.add_argument("--benchmark", required=True, choices=["rexvqa", "chestagentbench"], help="Benchmark to run")
|
| 117 |
run_parser.add_argument("--data-dir", required=True, help="Directory containing benchmark data")
|
| 118 |
run_parser.add_argument("--output-dir", default="benchmark_results", help="Output directory for results")
|
| 119 |
run_parser.add_argument("--max-questions", type=int, help="Maximum number of questions to process")
|
| 120 |
run_parser.add_argument("--temperature", type=float, default=0.7, help="Model temperature")
|
| 121 |
run_parser.add_argument("--top-p", type=float, default=0.95, help="Top-p value")
|
| 122 |
-
run_parser.add_argument("--max-tokens", type=int, default=
|
| 123 |
|
| 124 |
run_parser.set_defaults(func=run_benchmark_command)
|
| 125 |
|
|
|
|
| 22 |
provider_map = {
|
| 23 |
"openai": OpenAIProvider,
|
| 24 |
"google": GoogleProvider,
|
| 25 |
+
"openrouter": OpenRouterProvider,
|
| 26 |
"medrax": MedRAXProvider,
|
| 27 |
}
|
| 28 |
|
|
|
|
| 113 |
# Run benchmark command
|
| 114 |
run_parser = subparsers.add_parser("run", help="Run a benchmark")
|
| 115 |
run_parser.add_argument("--model", required=True, help="Model name (e.g., gpt-4o, gemini-2.5-pro)")
|
| 116 |
+
run_parser.add_argument("--provider", required=True, choices=["openai", "google", "openrouter", "medrax"], help="LLM provider")
|
| 117 |
run_parser.add_argument("--benchmark", required=True, choices=["rexvqa", "chestagentbench"], help="Benchmark to run")
|
| 118 |
run_parser.add_argument("--data-dir", required=True, help="Directory containing benchmark data")
|
| 119 |
run_parser.add_argument("--output-dir", default="benchmark_results", help="Output directory for results")
|
| 120 |
run_parser.add_argument("--max-questions", type=int, help="Maximum number of questions to process")
|
| 121 |
run_parser.add_argument("--temperature", type=float, default=0.7, help="Model temperature")
|
| 122 |
run_parser.add_argument("--top-p", type=float, default=0.95, help="Top-p value")
|
| 123 |
+
run_parser.add_argument("--max-tokens", type=int, default=1000, help="Maximum tokens per response")
|
| 124 |
|
| 125 |
run_parser.set_defaults(func=run_benchmark_command)
|
| 126 |
|
benchmarking/llm_providers/__init__.py
CHANGED
|
@@ -4,6 +4,7 @@ from .base import LLMProvider, LLMRequest, LLMResponse
|
|
| 4 |
from .openai_provider import OpenAIProvider
|
| 5 |
from .google_provider import GoogleProvider
|
| 6 |
from .medrax_provider import MedRAXProvider
|
|
|
|
| 7 |
|
| 8 |
__all__ = [
|
| 9 |
"LLMProvider",
|
|
@@ -12,4 +13,5 @@ __all__ = [
|
|
| 12 |
"OpenAIProvider",
|
| 13 |
"GoogleProvider",
|
| 14 |
"MedRAXProvider",
|
|
|
|
| 15 |
]
|
|
|
|
| 4 |
from .openai_provider import OpenAIProvider
|
| 5 |
from .google_provider import GoogleProvider
|
| 6 |
from .medrax_provider import MedRAXProvider
|
| 7 |
+
from .openrouter_provider import OpenRouterProvider
|
| 8 |
|
| 9 |
__all__ = [
|
| 10 |
"LLMProvider",
|
|
|
|
| 13 |
"OpenAIProvider",
|
| 14 |
"GoogleProvider",
|
| 15 |
"MedRAXProvider",
|
| 16 |
+
"OpenRouterProvider",
|
| 17 |
]
|
benchmarking/llm_providers/openrouter_provider.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""xAI LLM provider implementation using OpenRouter API via OpenAI SDK."""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from tenacity import retry, wait_exponential, stop_after_attempt
|
| 6 |
+
import base64
|
| 7 |
+
from openai import OpenAI
|
| 8 |
+
|
| 9 |
+
from .base import LLMProvider, LLMRequest, LLMResponse
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class OpenRouterProvider(LLMProvider):
|
| 13 |
+
"""LLM provider using OpenRouter API via OpenAI SDK."""
|
| 14 |
+
|
| 15 |
+
def _setup(self) -> None:
|
| 16 |
+
"""Set up OpenRouter client models."""
|
| 17 |
+
api_key = os.getenv("OPENROUTER_API_KEY")
|
| 18 |
+
if not api_key:
|
| 19 |
+
raise ValueError("OPENROUTER_API_KEY environment variable is required for xAI Grok via OpenRouter.")
|
| 20 |
+
base_url = os.getenv("OPENROUTER_BASE_URL", "https://openrouter.ai/api/v1")
|
| 21 |
+
# Use OpenAI SDK with OpenRouter endpoint
|
| 22 |
+
self.client = OpenAI(api_key=api_key, base_url=base_url)
|
| 23 |
+
|
| 24 |
+
@retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3))
|
| 25 |
+
def generate_response(self, request: LLMRequest) -> LLMResponse:
|
| 26 |
+
"""Generate response using OpenRouter Grok model via OpenAI SDK.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
request (LLMRequest): The request containing text, images, and parameters
|
| 30 |
+
Returns:
|
| 31 |
+
LLMResponse: The response from xAI Grok via OpenRouter
|
| 32 |
+
"""
|
| 33 |
+
start_time = time.time()
|
| 34 |
+
|
| 35 |
+
# Build messages
|
| 36 |
+
messages = []
|
| 37 |
+
if self.system_prompt:
|
| 38 |
+
messages.append({"role": "system", "content": self.system_prompt})
|
| 39 |
+
|
| 40 |
+
user_content = []
|
| 41 |
+
user_content.append({"type": "text", "text": request.text})
|
| 42 |
+
|
| 43 |
+
# Add images if provided
|
| 44 |
+
if request.images:
|
| 45 |
+
valid_images = self._validate_image_paths(request.images)
|
| 46 |
+
for image_path in valid_images:
|
| 47 |
+
try:
|
| 48 |
+
image_b64 = self._encode_image(image_path)
|
| 49 |
+
user_content.append({
|
| 50 |
+
"type": "image_url",
|
| 51 |
+
"image_url": {
|
| 52 |
+
"url": f"data:image/jpeg;base64,{image_b64}",
|
| 53 |
+
"detail": "high"
|
| 54 |
+
}
|
| 55 |
+
})
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"Error reading image {image_path}: {e}")
|
| 58 |
+
|
| 59 |
+
messages.append({"role": "user", "content": user_content})
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
response = self.client.chat.completions.create(
|
| 63 |
+
model=self.model_name,
|
| 64 |
+
messages=messages,
|
| 65 |
+
temperature=request.temperature,
|
| 66 |
+
top_p=request.top_p,
|
| 67 |
+
max_tokens=request.max_tokens,
|
| 68 |
+
**(request.additional_params or {})
|
| 69 |
+
)
|
| 70 |
+
duration = time.time() - start_time
|
| 71 |
+
content = response.choices[0].message.content if response.choices else ""
|
| 72 |
+
usage = {}
|
| 73 |
+
if hasattr(response, 'usage') and response.usage:
|
| 74 |
+
usage = {
|
| 75 |
+
"prompt_tokens": getattr(response.usage, "prompt_tokens", 0),
|
| 76 |
+
"completion_tokens": getattr(response.usage, "completion_tokens", 0),
|
| 77 |
+
"total_tokens": getattr(response.usage, "total_tokens", 0)
|
| 78 |
+
}
|
| 79 |
+
return LLMResponse(
|
| 80 |
+
content=content,
|
| 81 |
+
usage=usage,
|
| 82 |
+
duration=duration,
|
| 83 |
+
raw_response=response
|
| 84 |
+
)
|
| 85 |
+
except Exception as e:
|
| 86 |
+
return LLMResponse(
|
| 87 |
+
content=f"Error: {str(e)}",
|
| 88 |
+
duration=time.time() - start_time,
|
| 89 |
+
raw_response=None
|
| 90 |
+
)
|
medrax/models/model_factory.py
CHANGED
|
@@ -28,7 +28,11 @@ class ModelFactory:
|
|
| 28 |
"env_key": "OPENAI_API_KEY",
|
| 29 |
"base_url_key": "OPENAI_BASE_URL",
|
| 30 |
},
|
| 31 |
-
"gemini": {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
"openrouter": {
|
| 33 |
"class": ChatOpenAI, # OpenRouter uses OpenAI-compatible interface
|
| 34 |
"env_key": "OPENROUTER_API_KEY",
|
|
|
|
| 28 |
"env_key": "OPENAI_API_KEY",
|
| 29 |
"base_url_key": "OPENAI_BASE_URL",
|
| 30 |
},
|
| 31 |
+
"gemini": {
|
| 32 |
+
"class": ChatGoogleGenerativeAI,
|
| 33 |
+
"env_key": "GOOGLE_API_KEY",
|
| 34 |
+
"base_url_key": "GOOGLE_BASE_URL",
|
| 35 |
+
},
|
| 36 |
"openrouter": {
|
| 37 |
"class": ChatOpenAI, # OpenRouter uses OpenAI-compatible interface
|
| 38 |
"env_key": "OPENROUTER_API_KEY",
|