Text_Authenticator / processors /domain_classifier.py
satyaki-mitra's picture
Evaluation added
4466506
# DEPENDENCIES
import os
import torch
from typing import Dict
from typing import List
from typing import Tuple
from loguru import logger
from typing import Optional
from config.enums import Domain
import torch.nn.functional as F
from config.schemas import DomainPrediction
from models.model_manager import get_model_manager
from config.constants import domain_classification_params
from config.threshold_config import interpolate_thresholds
from config.threshold_config import get_threshold_for_domain
# Device-agnostic safety
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class DomainClassifier:
"""
Classifies text into domains using zero-shot classification
"""
# Use constants from config - map string keys to Domain enum
DOMAIN_LABELS = {Domain.ACADEMIC : domain_classification_params.DOMAIN_LABELS["academic"],
Domain.CREATIVE : domain_classification_params.DOMAIN_LABELS["creative"],
Domain.AI_ML : domain_classification_params.DOMAIN_LABELS["ai_ml"],
Domain.SOFTWARE_DEV : domain_classification_params.DOMAIN_LABELS["software_dev"],
Domain.TECHNICAL_DOC : domain_classification_params.DOMAIN_LABELS["technical_doc"],
Domain.ENGINEERING : domain_classification_params.DOMAIN_LABELS["engineering"],
Domain.SCIENCE : domain_classification_params.DOMAIN_LABELS["science"],
Domain.BUSINESS : domain_classification_params.DOMAIN_LABELS["business"],
Domain.JOURNALISM : domain_classification_params.DOMAIN_LABELS["journalism"],
Domain.SOCIAL_MEDIA : domain_classification_params.DOMAIN_LABELS["social_media"],
Domain.BLOG_PERSONAL : domain_classification_params.DOMAIN_LABELS["blog_personal"],
Domain.LEGAL : domain_classification_params.DOMAIN_LABELS["legal"],
Domain.MEDICAL : domain_classification_params.DOMAIN_LABELS["medical"],
Domain.MARKETING : domain_classification_params.DOMAIN_LABELS["marketing"],
Domain.TUTORIAL : domain_classification_params.DOMAIN_LABELS["tutorial"],
Domain.GENERAL : domain_classification_params.DOMAIN_LABELS["general"],
}
def __init__(self):
self.model_manager = get_model_manager()
self.primary_classifier = None
self.fallback_classifier = None
self.is_initialized = False
def initialize(self) -> bool:
"""
Initialize the domain classifier with zero-shot models
"""
try:
logger.info("Initializing domain classifier...")
# Load primary domain classifier (zero-shot)
self.primary_classifier = self.model_manager.load_model(model_name = "content_domain_classifier")
# Load fallback classifier
try:
self.fallback_classifier = self.model_manager.load_model(model_name = "domain_classifier_fallback")
logger.info("Fallback classifier loaded successfully")
except Exception as e:
logger.warning(f"Could not load fallback classifier: {repr(e)}")
self.fallback_classifier = None
self.is_initialized = True
logger.success("Domain classifier initialized successfully")
return True
except Exception as e:
logger.error(f"Failed to initialize domain classifier: {repr(e)}")
return False
def classify(self, text: str, top_k: int = domain_classification_params.TOP_K_DOMAINS, min_confidence: float = domain_classification_params.MIN_CONFIDENCE_THRESHOLD) -> DomainPrediction:
"""
Classify text into domain using zero-shot classification
Arguments:
----------
text { str } : Input text
top_k { int } : Number of top domains to consider
min_confidence { float } : Minimum confidence threshold
Returns:
--------
{ DomainPrediction } : DomainPrediction object
"""
if not self.is_initialized:
logger.warning("Domain classifier not initialized, initializing now...")
if not self.initialize():
return self._get_default_prediction()
try:
# First try with primary classifier
primary_result = self._classify_with_model(text = text,
classifier = self.primary_classifier,
model_type = "primary",
)
# Save it as best result
best_result = primary_result
# If primary is low confidence but we have fallback, try fallback
if (self.fallback_classifier and (primary_result.evidence_strength < domain_classification_params.HIGH_CONFIDENCE_THRESHOLD)):
logger.info("Primary classifier shows low confidence, trying fallback model...")
fallback_result = self._classify_with_model(text = text,
classifier = self.fallback_classifier,
model_type = "fallback",
)
# Use fallback if it has higher confidence
if (fallback_result.evidence_strength > best_result.evidence_strength):
best_result = fallback_result
# Hard Safety Gate: if not any solid evidence with great confidence to determine domain, fallback to General Domain
if best_result.evidence_strength < domain_classification_params.ABS_DOMAIN_CONFIDENCE_THRESHOLD:
logger.info(f"Domain confidence {best_result.evidence_strength:.3f} below hard threshold {domain_classification_params.ABS_DOMAIN_CONFIDENCE_THRESHOLD:.2f}; forcing GENERAL domain")
return DomainPrediction(primary_domain = Domain.GENERAL,
secondary_domain = None,
evidence_strength = 0.5,
domain_scores = {Domain.GENERAL.value: 1.0},
)
# Return primary result even if low confidence
return best_result
except Exception as e:
logger.error(f"Error in domain classification: {repr(e)}")
# Try fallback classifier if primary failed
if self.fallback_classifier:
try:
logger.info("Trying fallback classifier after primary failure...")
return self._classify_with_model(text = text,
classifier = self.fallback_classifier,
model_type = "fallback",
)
except Exception as fallback_error:
logger.error(f"Fallback classifier also failed: {repr(fallback_error)}")
# Both models failed, return default
return self._get_default_prediction()
# def _classify_with_model(self, text: str, classifier, model_type: str) -> DomainPrediction:
# """
# Classify using a zero-shot classification model
# """
# # Preprocess text
# processed_text = self._preprocess_text(text)
# # Get all candidate labels
# all_labels = list()
# label_to_domain = dict()
# for domain, labels in self.DOMAIN_LABELS.items():
# # Use the first label as the primary one for this domain
# primary_label = labels[0]
# all_labels.append(primary_label)
# label_to_domain[primary_label] = domain
# # Perform zero-shot classification
# result = classifier(processed_text,
# candidate_labels = all_labels,
# multi_label = False,
# hypothesis_template = "This text is about {}.",
# )
# # Convert to domain scores
# domain_scores = dict()
# for label, score in zip(result['labels'], result['scores']):
# domain = label_to_domain[label]
# domain_key = domain.value
# if (domain_key not in domain_scores):
# domain_scores[domain_key] = list()
# domain_scores[domain_key].append(score)
# # Average scores for each domain
# avg_domain_scores = {domain: sum(scores) / len(scores) for domain, scores in domain_scores.items()}
# # Sort by score
# sorted_domains = sorted(avg_domain_scores.items(), key = lambda x: x[1], reverse = True)
# # Get primary and secondary domains
# primary_domain_str, primary_score = sorted_domains[0]
# primary_domain = Domain(primary_domain_str)
# secondary_domain = None
# secondary_score = 0.0
# # Use constant for secondary domain minimum score
# secondary_min_score = domain_classification_params.SECONDARY_DOMAIN_MIN_SCORE
# if ((len(sorted_domains) > 1) and (sorted_domains[1][1] >= secondary_min_score)):
# secondary_domain = Domain(sorted_domains[1][0])
# secondary_score = sorted_domains[1][1]
# # Calculate evidence_strength
# evidence_strength = primary_score
# # Use constants for mixed domain detection
# high_conf_threshold = domain_classification_params.HIGH_CONFIDENCE_THRESHOLD
# mixed_secondary_min = domain_classification_params.MIXED_DOMAIN_SECONDARY_MIN
# mixed_ratio_thresh = domain_classification_params.MIXED_DOMAIN_RATIO_THRESHOLD
# mixed_conf_penalty = domain_classification_params.MIXED_DOMAIN_CONFIDENCE_PENALTY
# # If we have mixed domains with close scores, adjust confidence
# if (secondary_domain and (primary_score < high_conf_threshold) and (secondary_score > mixed_secondary_min)):
# score_ratio = secondary_score / primary_score
# # Secondary is at least 60% of primary
# if (score_ratio > mixed_ratio_thresh):
# # Lower confidence for mixed domains
# evidence_strength = ((primary_score + secondary_score) / 2 * mixed_conf_penalty)
# logger.info(f"Mixed domain detected: {primary_domain.value} + {secondary_domain.value}, will use interpolated thresholds")
# # Use constant for low confidence threshold
# low_conf_threshold = domain_classification_params.LOW_CONFIDENCE_THRESHOLD
# # If primary score is low and we have a secondary, it's uncertain
# if ((primary_score < low_conf_threshold) and secondary_domain):
# # Reduce confidence using penalty
# evidence_strength *= mixed_conf_penalty
# logger.info(f"{model_type.capitalize()} model classified domain: {primary_domain.value} (confidence: {evidence_strength:.3f})")
# return DomainPrediction(primary_domain = primary_domain,
# secondary_domain = secondary_domain,
# evidence_strength = evidence_strength,
# domain_scores = avg_domain_scores,
# )
def _classify_with_model(self, text: str, classifier, model_type: str) -> DomainPrediction:
"""
Classify using a manual NLI-style zero-shot classifier (NO pipelines)
"""
model, tokenizer = classifier
processed_text = self._preprocess_text(text)
# Build labels
all_labels = list()
label_to_domain = dict()
for domain, labels in self.DOMAIN_LABELS.items():
for label in labels[:3]:
all_labels.append(label)
label_to_domain[label] = domain
# NLI formulation
premises = [processed_text] * len(all_labels)
hypotheses = [f"This text is a {label}." for label in all_labels]
# Tokenize safely (device-agnostic)
inputs = tokenizer(premises,
hypotheses,
return_tensors = "pt",
padding = True,
truncation = True,
max_length = 1024, # HARD SAFETY CAP
)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Forward pass
with torch.no_grad():
logits = model(**inputs).logits
# Resolve entailment index robustly (works for ALL devices/models)
label2id = {k.lower(): v for k, v in model.config.label2id.items()}
# fallback: last column
entailment_idx = (label2id.get("entailment") or label2id.get("entails") or (logits.shape[-1] - 1))
probs = F.softmax(logits, dim = -1)
scores = probs[:, entailment_idx].detach().cpu().tolist()
# Aggregate per-domain scores
domain_scores = dict()
for label, score in zip(all_labels, scores):
domain = label_to_domain[label]
domain_key = domain.value
domain_scores.setdefault(domain_key, []).append(score)
# Average scores
avg_domain_scores = {domain: sum(vals) / len(vals) for domain, vals in domain_scores.items()}
# Sort
sorted_domains = sorted(avg_domain_scores.items(),
key = lambda x: x[1],
reverse = True,
)
primary_domain_str, primary_score = sorted_domains[0]
primary_domain = Domain(primary_domain_str)
secondary_domain = None
secondary_score = 0.0
secondary_min_score = domain_classification_params.SECONDARY_DOMAIN_MIN_SCORE
if (len(sorted_domains) > 1) and (sorted_domains[1][1] >= secondary_min_score):
secondary_domain = Domain(sorted_domains[1][0])
secondary_score = sorted_domains[1][1]
evidence_strength = primary_score
# Mixed-domain confidence adjustment
high_conf_threshold = domain_classification_params.HIGH_CONFIDENCE_THRESHOLD
mixed_secondary_min = domain_classification_params.MIXED_DOMAIN_SECONDARY_MIN
mixed_ratio_thresh = domain_classification_params.MIXED_DOMAIN_RATIO_THRESHOLD
mixed_conf_penalty = domain_classification_params.MIXED_DOMAIN_CONFIDENCE_PENALTY
if secondary_domain and primary_score < high_conf_threshold and secondary_score > mixed_secondary_min:
score_ratio = secondary_score / max(primary_score, 1e-6)
if (score_ratio > mixed_ratio_thresh):
evidence_strength = ((primary_score + secondary_score) / 2) * mixed_conf_penalty
logger.info(f"Mixed domain detected: {primary_domain.value} + {secondary_domain.value}")
low_conf_threshold = domain_classification_params.LOW_CONFIDENCE_THRESHOLD
if ((primary_score < low_conf_threshold) and secondary_domain):
evidence_strength *= mixed_conf_penalty
logger.info(f"{model_type.capitalize()} model classified domain: {primary_domain.value} (confidence: {evidence_strength:.3f})")
return DomainPrediction(primary_domain = primary_domain,
secondary_domain = secondary_domain,
evidence_strength = evidence_strength,
domain_scores = avg_domain_scores,
)
def _preprocess_text(self, text: str) -> str:
"""
Preprocess text for classification
"""
# Truncate to reasonable length using constant
max_words = domain_classification_params.MAX_WORDS_FOR_CLASSIFICATION
words = text.split()
if (len(words) > max_words):
text = ' '.join(words[:max_words])
# Clean up text
text = text.strip()
if not text:
return "general content"
return text
def _get_default_prediction(self) -> DomainPrediction:
"""
Get default prediction when classification fails
"""
return DomainPrediction(primary_domain = Domain.GENERAL,
secondary_domain = None,
evidence_strength = 0.5,
domain_scores = {Domain.GENERAL.value: 1.0},
)
def get_adaptive_thresholds(self, domain_prediction: DomainPrediction):
"""
Get adaptive thresholds based on domain prediction
"""
# Use constants for threshold decisions
high_conf_threshold = domain_classification_params.HIGH_CONFIDENCE_THRESHOLD
med_conf_threshold = domain_classification_params.MEDIUM_CONFIDENCE_THRESHOLD
# High confidence, single domain - use domain-specific thresholds
if ((domain_prediction.evidence_strength > high_conf_threshold) and (not domain_prediction.secondary_domain)):
return get_threshold_for_domain(domain_prediction.primary_domain)
# Mixed domains - interpolate between primary and secondary
if domain_prediction.secondary_domain:
primary_score = domain_prediction.domain_scores.get(domain_prediction.primary_domain.value, 0)
secondary_score = domain_prediction.domain_scores.get(domain_prediction.secondary_domain.value, 0)
if (primary_score + secondary_score > 0):
weight1 = primary_score / (primary_score + secondary_score)
else:
weight1 = domain_prediction.evidence_strength
return interpolate_thresholds(domain1 = domain_prediction.primary_domain,
domain2 = domain_prediction.secondary_domain,
weight1 = weight1,
)
# Low/medium confidence - blend with general domain
if (domain_prediction.evidence_strength < med_conf_threshold):
return interpolate_thresholds(domain1 = domain_prediction.primary_domain,
domain2 = Domain.GENERAL,
weight1 = domain_prediction.evidence_strength,
)
# Default: use domain-specific thresholds
return get_threshold_for_domain(domain_prediction.primary_domain)
def cleanup(self):
"""
Clean up resources
"""
self.primary_classifier = None
self.fallback_classifier = None
self.is_initialized = False
def quick_classify(text: str, **kwargs) -> DomainPrediction:
"""
Quick domain classification with default settings
Arguments:
----------
text { str } : Input text
**kwargs : Override settings
Returns:
--------
{ DomainPrediction } : DomainPrediction object
"""
classifier = DomainClassifier()
classifier.initialize()
return classifier.classify(text, **kwargs)
def get_domain_name(domain: Domain) -> str:
"""
Get human-readable domain name
Arguments:
----------
domain { Domain } : Domain enum value
Returns:
--------
{ str } : Human-readable domain name
"""
domain_names = {Domain.ACADEMIC : "Academic",
Domain.CREATIVE : "Creative Writing",
Domain.AI_ML : "AI/ML",
Domain.SOFTWARE_DEV : "Software Development",
Domain.TECHNICAL_DOC : "Technical Documentation",
Domain.ENGINEERING : "Engineering",
Domain.SCIENCE : "Science",
Domain.BUSINESS : "Business",
Domain.JOURNALISM : "Journalism",
Domain.SOCIAL_MEDIA : "Social Media",
Domain.BLOG_PERSONAL : "Personal Blog",
Domain.LEGAL : "Legal",
Domain.MEDICAL : "Medical",
Domain.MARKETING : "Marketing",
Domain.TUTORIAL : "Tutorial",
Domain.GENERAL : "General",
}
return domain_names.get(domain, "Unknown")
def is_technical_domain(domain: Domain) -> bool:
"""
Check if domain is technical in nature
Arguments:
----------
domain { Domain } : Domain enum value
Returns:
--------
{ bool } : True if technical domain
"""
technical_domains = {Domain.AI_ML,
Domain.SOFTWARE_DEV,
Domain.TECHNICAL_DOC,
Domain.ENGINEERING,
Domain.SCIENCE,
}
return domain in technical_domains
def is_creative_domain(domain: Domain) -> bool:
"""
Check if domain is creative in nature
Arguments:
----------
domain { Domain } : Domain enum value
Returns:
--------
{ bool } : True if creative domain
"""
creative_domains = {Domain.CREATIVE,
Domain.JOURNALISM,
Domain.SOCIAL_MEDIA,
Domain.BLOG_PERSONAL,
Domain.MARKETING,
}
return domain in creative_domains
def is_formal_domain(domain: Domain) -> bool:
"""
Check if domain is formal in nature
Arguments:
----------
domain { Domain } : Domain enum value
Returns:
--------
{ bool } : True if formal domain
"""
formal_domains = {Domain.ACADEMIC,
Domain.LEGAL,
Domain.MEDICAL,
Domain.BUSINESS,
}
return domain in formal_domains
# Export
__all__ = ["Domain",
"DomainClassifier",
"DomainPrediction",
"quick_classify",
"get_domain_name",
"is_technical_domain",
"is_creative_domain",
"is_formal_domain",
]