Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
1b98b3b
1
Parent(s):
f6057ac
Upload files
Browse files- app.py +179 -0
- examples/example_1.jpg +3 -0
- examples/example_2.JPG +3 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import requests
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
| 11 |
+
from qwen_vl_utils import process_vision_info
|
| 12 |
+
from spaces import GPU
|
| 13 |
+
from gradio.themes.citrus import Citrus
|
| 14 |
+
|
| 15 |
+
# --- Config ---
|
| 16 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 17 |
+
"Qwen/Qwen2.5-VL-3B-Instruct", torch_dtype="auto", device_map="auto"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
min_pixels = 224 * 224
|
| 21 |
+
max_pixels = 512 * 512
|
| 22 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
| 23 |
+
|
| 24 |
+
label2color = {}
|
| 25 |
+
|
| 26 |
+
def get_color(label, explicit_color=None):
|
| 27 |
+
if explicit_color:
|
| 28 |
+
return explicit_color
|
| 29 |
+
if label not in label2color:
|
| 30 |
+
label2color[label] = "#" + ''.join(random.choices('0123456789ABCDEF', k=6))
|
| 31 |
+
return label2color[label]
|
| 32 |
+
|
| 33 |
+
def create_annotated_image(image, json_data, height, width):
|
| 34 |
+
try:
|
| 35 |
+
json_data = json_data.split('```json')[1].split('```')[0]
|
| 36 |
+
bbox_data = json.loads(json_data)
|
| 37 |
+
except Exception:
|
| 38 |
+
return image
|
| 39 |
+
|
| 40 |
+
original_width, original_height = image.size
|
| 41 |
+
x_scale = original_width / width
|
| 42 |
+
y_scale = original_height / height
|
| 43 |
+
|
| 44 |
+
scale_factor = max(original_width, original_height) / 512
|
| 45 |
+
|
| 46 |
+
draw_image = image.copy()
|
| 47 |
+
draw = ImageDraw.Draw(draw_image)
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
print(1)
|
| 51 |
+
print('int(12 * scale_factor)', int(12 * scale_factor))
|
| 52 |
+
font = ImageFont.truetype("arial.ttf", int(12 * scale_factor))
|
| 53 |
+
except:
|
| 54 |
+
print(2)
|
| 55 |
+
font = ImageFont.load_default()
|
| 56 |
+
|
| 57 |
+
for item in bbox_data:
|
| 58 |
+
label = item.get("label", "")
|
| 59 |
+
color = get_color(label, item.get("color", None))
|
| 60 |
+
|
| 61 |
+
if "bbox_2d" in item:
|
| 62 |
+
bbox = item["bbox_2d"]
|
| 63 |
+
scaled_bbox = [
|
| 64 |
+
int(bbox[0] * x_scale),
|
| 65 |
+
int(bbox[1] * y_scale),
|
| 66 |
+
int(bbox[2] * x_scale),
|
| 67 |
+
int(bbox[3] * y_scale)
|
| 68 |
+
]
|
| 69 |
+
draw.rectangle(scaled_bbox, outline=color, width=int(2 * scale_factor))
|
| 70 |
+
draw.text(
|
| 71 |
+
(scaled_bbox[0], max(0, scaled_bbox[1] - int(15 * scale_factor))),
|
| 72 |
+
label,
|
| 73 |
+
fill=color,
|
| 74 |
+
font=font
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if "point_2d" in item:
|
| 78 |
+
x, y = item["point_2d"]
|
| 79 |
+
scaled_x = int(x * x_scale)
|
| 80 |
+
scaled_y = int(y * y_scale)
|
| 81 |
+
r = int(5 * scale_factor)
|
| 82 |
+
draw.ellipse((scaled_x - r, scaled_y - r, scaled_x + r, scaled_y + r), fill=color, outline=color)
|
| 83 |
+
draw.text((scaled_x + int(6 * scale_factor), scaled_y), label, fill=color, font=font)
|
| 84 |
+
|
| 85 |
+
return draw_image
|
| 86 |
+
|
| 87 |
+
@GPU
|
| 88 |
+
def detect(image, prompt):
|
| 89 |
+
STANDARD_SIZE = (512, 512)
|
| 90 |
+
image.thumbnail(STANDARD_SIZE)
|
| 91 |
+
messages = [
|
| 92 |
+
{
|
| 93 |
+
"role": "user",
|
| 94 |
+
"content": [
|
| 95 |
+
{"type": "image", "image": image},
|
| 96 |
+
{"type": "text", "text": prompt},
|
| 97 |
+
],
|
| 98 |
+
}
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 102 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 103 |
+
inputs = processor(
|
| 104 |
+
text=[text],
|
| 105 |
+
images=image_inputs,
|
| 106 |
+
videos=video_inputs,
|
| 107 |
+
padding=True,
|
| 108 |
+
return_tensors="pt",
|
| 109 |
+
).to(model.device)
|
| 110 |
+
|
| 111 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
| 112 |
+
generated_ids_trimmed = [
|
| 113 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 114 |
+
]
|
| 115 |
+
output_text = processor.batch_decode(
|
| 116 |
+
generated_ids_trimmed, do_sample=True, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 117 |
+
)[0]
|
| 118 |
+
|
| 119 |
+
input_height = inputs['image_grid_thw'][0][1] * 14
|
| 120 |
+
input_width = inputs['image_grid_thw'][0][2] * 14
|
| 121 |
+
|
| 122 |
+
annotated_image = create_annotated_image(image, output_text, input_height, input_width)
|
| 123 |
+
|
| 124 |
+
return annotated_image, output_text
|
| 125 |
+
|
| 126 |
+
css_hide_share = """
|
| 127 |
+
button#gradio-share-link-button-0 {
|
| 128 |
+
display: none !important;
|
| 129 |
+
}
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
# --- Gradio Interface ---
|
| 133 |
+
with gr.Blocks(theme=Citrus(), css=css_hide_share) as demo:
|
| 134 |
+
|
| 135 |
+
gr.Markdown("# Object Understanding with Vision-Language Models")
|
| 136 |
+
gr.Markdown("### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts.")
|
| 137 |
+
gr.Markdown("""
|
| 138 |
+
*Powered by Qwen2.5-VL*
|
| 139 |
+
*Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
|
| 140 |
+
""")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
with gr.Column():
|
| 144 |
+
with gr.Row():
|
| 145 |
+
image_input = gr.Image(label="Upload an image", type="pil", height=500)
|
| 146 |
+
|
| 147 |
+
with gr.Column():
|
| 148 |
+
prompt_input = gr.Textbox(label="Enter your prompt", placeholder="e.g., Detect all red cars in the image")
|
| 149 |
+
category_input = gr.Textbox(label="Category", interactive=False)
|
| 150 |
+
|
| 151 |
+
generate_btn = gr.Button(value="Generate")
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
output_image = gr.Image(type="pil", label="Annotated image", height=500)
|
| 155 |
+
output_textbox = gr.Textbox(label="Model response", lines=10)
|
| 156 |
+
|
| 157 |
+
example_prompts = [
|
| 158 |
+
["examples/example_1.jpg", "Detect all objects in the image and return their locations and labels.", "Object Detection"],
|
| 159 |
+
["examples/example_2.JPG", "Detect all the individual candies in the image and return their locations and labels.", "Object Detection"],
|
| 160 |
+
["examples/example_1.jpg", "Count the number of red cars in the image.", "Object Counting"],
|
| 161 |
+
["examples/example_2.JPG", "Count the number of blue candies in the image.", "Object Counting"],
|
| 162 |
+
["examples/example_1.jpg", "Identify the red cars in this image, detect their key points and return their positions in the form of points.", "Visual Grounding + Keypoint Detection"],
|
| 163 |
+
["examples/example_2.JPG", "Identify the blue candies in this image, detect their key points and return their positions in the form of points.", "Visual Grounding + Keypoint Detection"],
|
| 164 |
+
["examples/example_1.jpg", "Detect the red car that is leading in this image and return its location and label.", "Visual Grounding + Object Detection"],
|
| 165 |
+
["examples/example_2.JPG", "Detect the blue candy located at the top of the group in this image and return its location and label.", "Visual Grounding + Object Detection"],
|
| 166 |
+
]
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
gr.Markdown("### Examples")
|
| 170 |
+
gr.Examples(
|
| 171 |
+
examples=example_prompts,
|
| 172 |
+
inputs=[image_input, prompt_input, category_input],
|
| 173 |
+
label="Click an example to populate the input"
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
generate_btn.click(fn=detect, inputs=[image_input, prompt_input], outputs=[output_image, output_textbox])
|
| 177 |
+
|
| 178 |
+
if __name__ == "__main__":
|
| 179 |
+
demo.launch()
|
examples/example_1.jpg
ADDED
|
Git LFS Details
|
examples/example_2.JPG
ADDED
|
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
datasets
|
| 4 |
+
Pillow
|
| 5 |
+
gradio
|
| 6 |
+
accelerate
|
| 7 |
+
qwen-vl-utils
|
| 8 |
+
torchvision
|
| 9 |
+
matplotlib
|