Tobias Pasquale commited on
Commit
2770882
Β·
1 Parent(s): da673c2

docs: add comprehensive Phase 3+ development roadmap

Browse files

- Created project_phase3_roadmap.md with complete development plan
- Detailed 6 issues (Issues #23-#28) for remaining project phases
- Technical specifications for LLM integration and RAG implementation
- Implementation timelines and effort estimates for 7-10 week completion
- Risk management and success metrics for production deployment
- Transition plan from semantic search to full conversational AI

Files changed (1) hide show
  1. project_phase3_roadmap.md +367 -0
project_phase3_roadmap.md ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Project Phase 3+ Comprehensive Roadmap
2
+
3
+ **Project**: MSSE AI Engineering - RAG Application
4
+ **Current Status**: Phase 2B Complete βœ…
5
+ **Next Phase**: Phase 3 - RAG Core Implementation
6
+ **Date**: October 17, 2025
7
+
8
+ ## Executive Summary
9
+
10
+ With Phase 2B successfully completed and merged, we now have a fully functional semantic search system capable of ingesting policy documents, generating embeddings, and providing intelligent search functionality. The next major milestone is implementing the RAG (Retrieval-Augmented Generation) core functionality to transform our semantic search system into a conversational AI assistant.
11
+
12
+ ## Current State Assessment
13
+
14
+ ### βœ… **Completed Achievements (Phase 2B)**
15
+
16
+ #### 1. Production-Ready Semantic Search Pipeline
17
+ - **Enhanced Ingestion**: Document processing with embedding generation and batch optimization
18
+ - **Search API**: RESTful `/search` endpoint with comprehensive validation and error handling
19
+ - **Vector Storage**: ChromaDB integration with metadata management and persistence
20
+ - **Quality Assurance**: 90+ tests with comprehensive end-to-end validation
21
+
22
+ #### 2. Robust Technical Infrastructure
23
+ - **CI/CD Pipeline**: GitHub Actions with pre-commit hooks, automated testing, and deployment
24
+ - **Code Quality**: 100% compliance with black, isort, flake8 formatting standards
25
+ - **Documentation**: Complete API documentation with examples and performance metrics
26
+ - **Performance**: Sub-second search response times with optimized memory usage
27
+
28
+ #### 3. Production Deployment
29
+ - **Live Application**: Deployed on Render with health check endpoints
30
+ - **Docker Support**: Containerized for consistent environments
31
+ - **Database Persistence**: ChromaDB data persists across deployments
32
+ - **Error Handling**: Graceful degradation and detailed error reporting
33
+
34
+ ### πŸ“Š **Key Metrics Achieved**
35
+ - **Test Coverage**: 90 tests covering all core functionality
36
+ - **Processing Performance**: 6-8 chunks/second with embedding generation
37
+ - **Search Performance**: <1 second response time for typical queries
38
+ - **Content Coverage**: 98 chunks across 22 corporate policy documents
39
+ - **Code Quality**: 100% formatting compliance, comprehensive error handling
40
+
41
+ ## Phase 3+ Development Roadmap
42
+
43
+ ### **PHASE 3: RAG Core Implementation** 🎯
44
+
45
+ **Objective**: Transform the semantic search system into an intelligent conversational AI assistant that can answer questions about corporate policies using retrieved context.
46
+
47
+ #### **Issue #23: LLM Integration and Chat Endpoint**
48
+ **Priority**: High | **Effort**: Large | **Timeline**: 2-3 weeks
49
+
50
+ **Description**: Implement the core RAG functionality by integrating a Large Language Model (LLM) and creating a conversational chat interface.
51
+
52
+ **Technical Requirements**:
53
+
54
+ 1. **LLM Integration**
55
+ - Integrate with OpenRouter or Groq API for free-tier LLM access
56
+ - Implement API key management and environment configuration
57
+ - Add retry logic and rate limiting for API calls
58
+ - Support multiple LLM providers with fallback options
59
+
60
+ 2. **Context Retrieval System**
61
+ - Extend existing search functionality for context retrieval
62
+ - Implement dynamic context window management
63
+ - Add relevance filtering and ranking improvements
64
+ - Create context summarization for long documents
65
+
66
+ 3. **Prompt Engineering**
67
+ - Design system prompt templates for corporate policy Q&A
68
+ - Implement context injection strategies
69
+ - Create few-shot examples for consistent responses
70
+ - Add citation requirements and formatting guidelines
71
+
72
+ 4. **Chat Endpoint Implementation**
73
+ - Create `/chat` POST endpoint with conversational interface
74
+ - Implement conversation history management (optional)
75
+ - Add streaming response support (optional)
76
+ - Include comprehensive input validation and sanitization
77
+
78
+ **Implementation Files**:
79
+ ```
80
+ src/
81
+ β”œβ”€β”€ llm/
82
+ β”‚ β”œβ”€β”€ __init__.py
83
+ β”‚ β”œβ”€β”€ llm_service.py
84
+ β”‚ β”œβ”€β”€ prompt_templates.py
85
+ β”‚ └── context_manager.py
86
+ β”œβ”€β”€ rag/
87
+ β”‚ β”œβ”€β”€ __init__.py
88
+ β”‚ β”œβ”€β”€ rag_pipeline.py
89
+ β”‚ └── response_formatter.py
90
+ tests/
91
+ β”œβ”€β”€ test_llm/
92
+ β”œβ”€β”€ test_rag/
93
+ └── test_integration/
94
+ └── test_rag_e2e.py
95
+ ```
96
+
97
+ **API Specification**:
98
+ ```json
99
+ POST /chat
100
+ {
101
+ "message": "What is the remote work policy?",
102
+ "conversation_id": "optional-uuid",
103
+ "include_sources": true
104
+ }
105
+
106
+ Response:
107
+ {
108
+ "status": "success",
109
+ "response": "Based on our corporate policies, remote work is allowed for eligible employees...",
110
+ "sources": [
111
+ {
112
+ "document": "remote_work_policy.md",
113
+ "chunk_id": "rw_policy_chunk_3",
114
+ "relevance_score": 0.89,
115
+ "excerpt": "Employees may work remotely up to 3 days per week..."
116
+ }
117
+ ],
118
+ "conversation_id": "uuid-string",
119
+ "processing_time_ms": 1250
120
+ }
121
+ ```
122
+
123
+ **Acceptance Criteria**:
124
+ - [ ] LLM integration with proper error handling and fallbacks
125
+ - [ ] Chat endpoint returns contextually relevant responses
126
+ - [ ] All responses include proper source citations
127
+ - [ ] Response quality meets baseline standards (coherent, accurate, policy-grounded)
128
+ - [ ] Performance targets: <5 second response time for typical queries
129
+ - [ ] Comprehensive test coverage (minimum 15 new tests)
130
+ - [ ] Integration with existing search infrastructure
131
+ - [ ] Proper guardrails prevent off-topic responses
132
+
133
+ #### **Issue #24: Guardrails and Response Quality**
134
+ **Priority**: High | **Effort**: Medium | **Timeline**: 1-2 weeks
135
+
136
+ **Description**: Implement comprehensive guardrails to ensure response quality, safety, and adherence to corporate policy scope.
137
+
138
+ **Technical Requirements**:
139
+
140
+ 1. **Content Guardrails**
141
+ - Implement topic relevance filtering
142
+ - Add corporate policy scope validation
143
+ - Create response length limits and formatting
144
+ - Implement citation requirement enforcement
145
+
146
+ 2. **Safety Guardrails**
147
+ - Add content moderation for inappropriate queries
148
+ - Implement response toxicity detection
149
+ - Create data privacy protection measures
150
+ - Add rate limiting and abuse prevention
151
+
152
+ 3. **Quality Assurance**
153
+ - Implement response coherence validation
154
+ - Add factual accuracy checks against source material
155
+ - Create confidence scoring for responses
156
+ - Add fallback responses for edge cases
157
+
158
+ **Implementation Details**:
159
+ ```python
160
+ class ResponseGuardrails:
161
+ def validate_query(self, query: str) -> ValidationResult
162
+ def validate_response(self, response: str, sources: List) -> ValidationResult
163
+ def apply_content_filters(self, content: str) -> str
164
+ def check_citation_requirements(self, response: str) -> bool
165
+ ```
166
+
167
+ **Acceptance Criteria**:
168
+ - [ ] System refuses to answer non-policy-related questions
169
+ - [ ] All responses include at least one source citation
170
+ - [ ] Response length is within configured limits (default: 500 words)
171
+ - [ ] Content moderation prevents inappropriate responses
172
+ - [ ] Confidence scoring accurately reflects response quality
173
+ - [ ] Comprehensive test coverage for edge cases and failure modes
174
+
175
+ ### **PHASE 4: Web Application Enhancement** 🌐
176
+
177
+ #### **Issue #25: Chat Interface Implementation**
178
+ **Priority**: Medium | **Effort**: Medium | **Timeline**: 1-2 weeks
179
+
180
+ **Description**: Create a user-friendly web interface for interacting with the RAG system.
181
+
182
+ **Technical Requirements**:
183
+ - Modern chat UI with message history
184
+ - Real-time response streaming (optional)
185
+ - Source citation display with links to original documents
186
+ - Mobile-responsive design
187
+ - Error handling and loading states
188
+
189
+ **Files to Create/Modify**:
190
+ ```
191
+ templates/
192
+ β”œβ”€β”€ chat.html (new)
193
+ β”œβ”€β”€ base.html (new)
194
+ static/
195
+ β”œβ”€β”€ css/
196
+ β”‚ └── chat.css (new)
197
+ β”œβ”€β”€ js/
198
+ β”‚ └── chat.js (new)
199
+ ```
200
+
201
+ #### **Issue #26: Document Management Interface**
202
+ **Priority**: Low | **Effort**: Small | **Timeline**: 1 week
203
+
204
+ **Description**: Add administrative interface for document management and system monitoring.
205
+
206
+ **Technical Requirements**:
207
+ - Document upload and processing interface
208
+ - System health and performance dashboard
209
+ - Search analytics and usage metrics
210
+ - Database management tools
211
+
212
+ ### **PHASE 5: Evaluation and Quality Assurance** πŸ“Š
213
+
214
+ #### **Issue #27: Evaluation Framework Implementation**
215
+ **Priority**: High | **Effort**: Medium | **Timeline**: 1-2 weeks
216
+
217
+ **Description**: Implement comprehensive evaluation metrics for RAG response quality.
218
+
219
+ **Technical Requirements**:
220
+
221
+ 1. **Evaluation Dataset**
222
+ - Create 25-30 test questions covering all policy domains
223
+ - Develop "gold standard" answers for comparison
224
+ - Include edge cases and boundary conditions
225
+ - Add question difficulty levels and categories
226
+
227
+ 2. **Automated Metrics**
228
+ - **Groundedness**: Verify responses are supported by retrieved context
229
+ - **Citation Accuracy**: Ensure citations point to relevant source material
230
+ - **Relevance**: Measure how well responses address the question
231
+ - **Completeness**: Assess whether responses fully answer questions
232
+ - **Consistency**: Verify similar questions get similar answers
233
+
234
+ 3. **Performance Metrics**
235
+ - **Latency Measurement**: p50, p95, p99 response times
236
+ - **Throughput**: Requests per second capacity
237
+ - **Resource Usage**: Memory and CPU utilization
238
+ - **Error Rates**: Track and categorize failure modes
239
+
240
+ **Implementation Structure**:
241
+ ```
242
+ evaluation/
243
+ β”œβ”€β”€ __init__.py
244
+ β”œβ”€β”€ evaluation_dataset.json
245
+ β”œβ”€β”€ metrics/
246
+ β”‚ β”œβ”€β”€ groundedness.py
247
+ β”‚ β”œβ”€β”€ citation_accuracy.py
248
+ β”‚ β”œβ”€β”€ relevance.py
249
+ β”‚ └── performance.py
250
+ β”œβ”€β”€ evaluation_runner.py
251
+ └── report_generator.py
252
+ ```
253
+
254
+ **Evaluation Questions Example**:
255
+ ```json
256
+ {
257
+ "questions": [
258
+ {
259
+ "id": "q001",
260
+ "category": "remote_work",
261
+ "difficulty": "basic",
262
+ "question": "How many days per week can employees work remotely?",
263
+ "expected_answer": "Employees may work remotely up to 3 days per week with manager approval.",
264
+ "expected_sources": ["remote_work_policy.md"],
265
+ "evaluation_criteria": ["factual_accuracy", "citation_required"]
266
+ }
267
+ ]
268
+ }
269
+ ```
270
+
271
+ **Acceptance Criteria**:
272
+ - [ ] Evaluation dataset covers all major policy areas
273
+ - [ ] Automated metrics provide reliable quality scores
274
+ - [ ] Performance benchmarks establish baseline expectations
275
+ - [ ] Evaluation reports generate actionable insights
276
+ - [ ] Results demonstrate system meets quality requirements
277
+ - [ ] Continuous evaluation integration for ongoing monitoring
278
+
279
+ ### **PHASE 6: Final Documentation and Deployment** πŸ“
280
+
281
+ #### **Issue #28: Production Deployment and Documentation**
282
+ **Priority**: Medium | **Effort**: Medium | **Timeline**: 1 week
283
+
284
+ **Description**: Prepare the application for production deployment with comprehensive documentation.
285
+
286
+ **Technical Requirements**:
287
+
288
+ 1. **Production Configuration**
289
+ - Environment variable management for LLM API keys
290
+ - Database backup and recovery procedures
291
+ - Monitoring and alerting setup
292
+ - Security hardening and access controls
293
+
294
+ 2. **Comprehensive Documentation**
295
+ - Complete `design-and-evaluation.md` with architecture decisions
296
+ - Update `deployed.md` with live application URLs and features
297
+ - Finalize `README.md` with setup and usage instructions
298
+ - Create API documentation with OpenAPI/Swagger specs
299
+
300
+ 3. **Demonstration Materials**
301
+ - Record 5-10 minute demonstration video
302
+ - Create slide deck explaining architecture and evaluation results
303
+ - Prepare code walkthrough materials
304
+ - Document key design decisions and trade-offs
305
+
306
+ **Documentation Structure**:
307
+ ```
308
+ docs/
309
+ β”œβ”€β”€ architecture/
310
+ β”‚ β”œβ”€β”€ system_overview.md
311
+ β”‚ β”œβ”€β”€ api_reference.md
312
+ β”‚ └── deployment_guide.md
313
+ β”œβ”€β”€ evaluation/
314
+ β”‚ β”œβ”€β”€ evaluation_results.md
315
+ β”‚ └── performance_benchmarks.md
316
+ └── demonstration/
317
+ β”œβ”€β”€ demo_script.md
318
+ └── video_outline.md
319
+ ```
320
+
321
+ ## Implementation Strategy
322
+
323
+ ### **Development Approach**
324
+ 1. **Test-Driven Development**: Write tests before implementation for all new features
325
+ 2. **Incremental Integration**: Build and test each component individually before integration
326
+ 3. **Continuous Deployment**: Maintain working deployments throughout development
327
+ 4. **Performance Monitoring**: Establish metrics and monitoring from the beginning
328
+
329
+ ### **Risk Management**
330
+ 1. **LLM API Dependencies**: Implement multiple providers with graceful fallbacks
331
+ 2. **Response Quality**: Establish quality gates and comprehensive evaluation
332
+ 3. **Performance Scaling**: Design with scalability in mind from the start
333
+ 4. **Data Privacy**: Ensure no sensitive data is transmitted to external APIs
334
+
335
+ ### **Timeline Summary**
336
+ - **Phase 3**: 3-4 weeks (LLM integration + guardrails)
337
+ - **Phase 4**: 2-3 weeks (UI enhancement + management interface)
338
+ - **Phase 5**: 1-2 weeks (evaluation framework)
339
+ - **Phase 6**: 1 week (documentation + deployment)
340
+
341
+ **Total Estimated Timeline**: 7-10 weeks for complete implementation
342
+
343
+ ### **Success Metrics**
344
+ - **Functionality**: All core RAG features working as specified
345
+ - **Quality**: Evaluation metrics demonstrate high response quality
346
+ - **Performance**: System meets latency and throughput requirements
347
+ - **Reliability**: Comprehensive error handling and graceful degradation
348
+ - **Usability**: Intuitive interface with clear user feedback
349
+ - **Maintainability**: Well-documented, tested, and modular codebase
350
+
351
+ ## Getting Started with Phase 3
352
+
353
+ ### **Immediate Next Steps**
354
+ 1. **Environment Setup**: Configure LLM API keys (OpenRouter/Groq)
355
+ 2. **Create Issue #23**: Set up detailed GitHub issue for LLM integration
356
+ 3. **Design Review**: Finalize prompt templates and context strategies
357
+ 4. **Test Planning**: Design comprehensive test cases for RAG functionality
358
+ 5. **Branch Strategy**: Create `feat/rag-core-implementation` development branch
359
+
360
+ ### **Key Design Decisions to Make**
361
+ 1. **LLM Provider Selection**: OpenRouter vs Groq vs others
362
+ 2. **Context Window Strategy**: How much context to provide to LLM
363
+ 3. **Response Format**: Structured vs natural language responses
364
+ 4. **Conversation Management**: Stateless vs conversation history
365
+ 5. **Deployment Strategy**: Single service vs microservices
366
+
367
+ This roadmap provides a clear path from our current semantic search system to a full-featured RAG application ready for production deployment and evaluation.