Spaces:
Sleeping
Sleeping
Tobias Pasquale
commited on
Commit
·
a3dfc07
1
Parent(s):
aff5d04
fix: apply formatting and linting fixes for CI/CD compliance
Browse files- Remove unused Union import from typing
- Fix E501 line length violations by breaking long lines
- Apply black and isort formatting
- Fix flake8 compliance issues
All pre-commit hooks now pass locally
- app.py +13 -7
- src/ingestion/ingestion_pipeline.py +31 -23
- tests/test_enhanced_app.py +28 -23
- tests/test_ingestion/test_enhanced_ingestion_pipeline.py +61 -46
app.py
CHANGED
|
@@ -24,6 +24,7 @@ def ingest():
|
|
| 24 |
"""Endpoint to trigger document ingestion with embeddings"""
|
| 25 |
try:
|
| 26 |
from flask import request
|
|
|
|
| 27 |
from src.config import (
|
| 28 |
CORPUS_DIRECTORY,
|
| 29 |
DEFAULT_CHUNK_SIZE,
|
|
@@ -35,12 +36,12 @@ def ingest():
|
|
| 35 |
# Get optional parameters from request
|
| 36 |
data = request.get_json() if request.is_json else {}
|
| 37 |
store_embeddings = data.get("store_embeddings", True)
|
| 38 |
-
|
| 39 |
pipeline = IngestionPipeline(
|
| 40 |
-
chunk_size=DEFAULT_CHUNK_SIZE,
|
| 41 |
-
overlap=DEFAULT_OVERLAP,
|
| 42 |
seed=RANDOM_SEED,
|
| 43 |
-
store_embeddings=store_embeddings
|
| 44 |
)
|
| 45 |
|
| 46 |
result = pipeline.process_directory_with_embeddings(CORPUS_DIRECTORY)
|
|
@@ -52,13 +53,18 @@ def ingest():
|
|
| 52 |
"files_processed": result["files_processed"],
|
| 53 |
"embeddings_stored": result["embeddings_stored"],
|
| 54 |
"store_embeddings": result["store_embeddings"],
|
| 55 |
-
"message":
|
|
|
|
|
|
|
|
|
|
| 56 |
}
|
| 57 |
-
|
| 58 |
# Include failed files info if any
|
| 59 |
if result["failed_files"]:
|
| 60 |
response["failed_files"] = result["failed_files"]
|
| 61 |
-
response[
|
|
|
|
|
|
|
| 62 |
|
| 63 |
return jsonify(response)
|
| 64 |
|
|
|
|
| 24 |
"""Endpoint to trigger document ingestion with embeddings"""
|
| 25 |
try:
|
| 26 |
from flask import request
|
| 27 |
+
|
| 28 |
from src.config import (
|
| 29 |
CORPUS_DIRECTORY,
|
| 30 |
DEFAULT_CHUNK_SIZE,
|
|
|
|
| 36 |
# Get optional parameters from request
|
| 37 |
data = request.get_json() if request.is_json else {}
|
| 38 |
store_embeddings = data.get("store_embeddings", True)
|
| 39 |
+
|
| 40 |
pipeline = IngestionPipeline(
|
| 41 |
+
chunk_size=DEFAULT_CHUNK_SIZE,
|
| 42 |
+
overlap=DEFAULT_OVERLAP,
|
| 43 |
seed=RANDOM_SEED,
|
| 44 |
+
store_embeddings=store_embeddings,
|
| 45 |
)
|
| 46 |
|
| 47 |
result = pipeline.process_directory_with_embeddings(CORPUS_DIRECTORY)
|
|
|
|
| 53 |
"files_processed": result["files_processed"],
|
| 54 |
"embeddings_stored": result["embeddings_stored"],
|
| 55 |
"store_embeddings": result["store_embeddings"],
|
| 56 |
+
"message": (
|
| 57 |
+
f"Successfully processed {result['chunks_processed']} chunks "
|
| 58 |
+
f"from {result['files_processed']} files"
|
| 59 |
+
),
|
| 60 |
}
|
| 61 |
+
|
| 62 |
# Include failed files info if any
|
| 63 |
if result["failed_files"]:
|
| 64 |
response["failed_files"] = result["failed_files"]
|
| 65 |
+
response[
|
| 66 |
+
"warnings"
|
| 67 |
+
] = f"{len(result['failed_files'])} files failed to process"
|
| 68 |
|
| 69 |
return jsonify(response)
|
| 70 |
|
src/ingestion/ingestion_pipeline.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from pathlib import Path
|
| 2 |
-
from typing import Any, Dict, List, Optional
|
| 3 |
|
| 4 |
from ..embedding.embedding_service import EmbeddingService
|
| 5 |
from ..vector_store.vector_db import VectorDatabase
|
|
@@ -11,13 +11,13 @@ class IngestionPipeline:
|
|
| 11 |
"""Complete ingestion pipeline for processing document corpus with embeddings"""
|
| 12 |
|
| 13 |
def __init__(
|
| 14 |
-
self,
|
| 15 |
-
chunk_size: int = 1000,
|
| 16 |
-
overlap: int = 200,
|
| 17 |
seed: int = 42,
|
| 18 |
store_embeddings: bool = True,
|
| 19 |
vector_db: Optional[VectorDatabase] = None,
|
| 20 |
-
embedding_service: Optional[EmbeddingService] = None
|
| 21 |
):
|
| 22 |
"""
|
| 23 |
Initialize the ingestion pipeline
|
|
@@ -36,15 +36,15 @@ class IngestionPipeline:
|
|
| 36 |
)
|
| 37 |
self.seed = seed
|
| 38 |
self.store_embeddings = store_embeddings
|
| 39 |
-
|
| 40 |
# Initialize embedding components if storing embeddings
|
| 41 |
if store_embeddings:
|
| 42 |
self.embedding_service = embedding_service or EmbeddingService()
|
| 43 |
if vector_db is None:
|
| 44 |
from ..config import COLLECTION_NAME, VECTOR_DB_PERSIST_PATH
|
|
|
|
| 45 |
self.vector_db = VectorDatabase(
|
| 46 |
-
persist_path=VECTOR_DB_PERSIST_PATH,
|
| 47 |
-
collection_name=COLLECTION_NAME
|
| 48 |
)
|
| 49 |
else:
|
| 50 |
self.vector_db = vector_db
|
|
@@ -118,7 +118,12 @@ class IngestionPipeline:
|
|
| 118 |
continue
|
| 119 |
|
| 120 |
# Generate and store embeddings if enabled
|
| 121 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
try:
|
| 123 |
embeddings_stored = self._store_embeddings_batch(all_chunks)
|
| 124 |
except Exception as e:
|
|
@@ -131,7 +136,7 @@ class IngestionPipeline:
|
|
| 131 |
"failed_files": failed_files,
|
| 132 |
"embeddings_stored": embeddings_stored,
|
| 133 |
"store_embeddings": self.store_embeddings,
|
| 134 |
-
"chunks": all_chunks # Include chunks for backward compatibility
|
| 135 |
}
|
| 136 |
|
| 137 |
def process_file(self, file_path: str) -> List[Dict[str, Any]]:
|
|
@@ -157,44 +162,47 @@ class IngestionPipeline:
|
|
| 157 |
def _store_embeddings_batch(self, chunks: List[Dict[str, Any]]) -> int:
|
| 158 |
"""
|
| 159 |
Generate embeddings and store chunks in vector database
|
| 160 |
-
|
| 161 |
Args:
|
| 162 |
chunks: List of text chunks with metadata
|
| 163 |
-
|
| 164 |
Returns:
|
| 165 |
Number of embeddings stored successfully
|
| 166 |
"""
|
| 167 |
if not self.embedding_service or not self.vector_db:
|
| 168 |
return 0
|
| 169 |
-
|
| 170 |
stored_count = 0
|
| 171 |
batch_size = 32 # Process in batches for memory efficiency
|
| 172 |
-
|
| 173 |
for i in range(0, len(chunks), batch_size):
|
| 174 |
-
batch = chunks[i:i + batch_size]
|
| 175 |
-
|
| 176 |
try:
|
| 177 |
# Extract texts and prepare data for vector storage
|
| 178 |
texts = [chunk["content"] for chunk in batch]
|
| 179 |
chunk_ids = [chunk["metadata"]["chunk_id"] for chunk in batch]
|
| 180 |
metadatas = [chunk["metadata"] for chunk in batch]
|
| 181 |
-
|
| 182 |
# Generate embeddings for the batch
|
| 183 |
embeddings = self.embedding_service.embed_texts(texts)
|
| 184 |
-
|
| 185 |
# Store in vector database
|
| 186 |
self.vector_db.add_embeddings(
|
| 187 |
embeddings=embeddings,
|
| 188 |
chunk_ids=chunk_ids,
|
| 189 |
documents=texts,
|
| 190 |
-
metadatas=metadatas
|
| 191 |
)
|
| 192 |
-
|
| 193 |
stored_count += len(batch)
|
| 194 |
-
print(
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
| 196 |
except Exception as e:
|
| 197 |
print(f"Warning: Failed to store batch {i // batch_size + 1}: {e}")
|
| 198 |
continue
|
| 199 |
-
|
| 200 |
return stored_count
|
|
|
|
| 1 |
from pathlib import Path
|
| 2 |
+
from typing import Any, Dict, List, Optional
|
| 3 |
|
| 4 |
from ..embedding.embedding_service import EmbeddingService
|
| 5 |
from ..vector_store.vector_db import VectorDatabase
|
|
|
|
| 11 |
"""Complete ingestion pipeline for processing document corpus with embeddings"""
|
| 12 |
|
| 13 |
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
chunk_size: int = 1000,
|
| 16 |
+
overlap: int = 200,
|
| 17 |
seed: int = 42,
|
| 18 |
store_embeddings: bool = True,
|
| 19 |
vector_db: Optional[VectorDatabase] = None,
|
| 20 |
+
embedding_service: Optional[EmbeddingService] = None,
|
| 21 |
):
|
| 22 |
"""
|
| 23 |
Initialize the ingestion pipeline
|
|
|
|
| 36 |
)
|
| 37 |
self.seed = seed
|
| 38 |
self.store_embeddings = store_embeddings
|
| 39 |
+
|
| 40 |
# Initialize embedding components if storing embeddings
|
| 41 |
if store_embeddings:
|
| 42 |
self.embedding_service = embedding_service or EmbeddingService()
|
| 43 |
if vector_db is None:
|
| 44 |
from ..config import COLLECTION_NAME, VECTOR_DB_PERSIST_PATH
|
| 45 |
+
|
| 46 |
self.vector_db = VectorDatabase(
|
| 47 |
+
persist_path=VECTOR_DB_PERSIST_PATH, collection_name=COLLECTION_NAME
|
|
|
|
| 48 |
)
|
| 49 |
else:
|
| 50 |
self.vector_db = vector_db
|
|
|
|
| 118 |
continue
|
| 119 |
|
| 120 |
# Generate and store embeddings if enabled
|
| 121 |
+
if (
|
| 122 |
+
self.store_embeddings
|
| 123 |
+
and all_chunks
|
| 124 |
+
and self.embedding_service
|
| 125 |
+
and self.vector_db
|
| 126 |
+
):
|
| 127 |
try:
|
| 128 |
embeddings_stored = self._store_embeddings_batch(all_chunks)
|
| 129 |
except Exception as e:
|
|
|
|
| 136 |
"failed_files": failed_files,
|
| 137 |
"embeddings_stored": embeddings_stored,
|
| 138 |
"store_embeddings": self.store_embeddings,
|
| 139 |
+
"chunks": all_chunks, # Include chunks for backward compatibility
|
| 140 |
}
|
| 141 |
|
| 142 |
def process_file(self, file_path: str) -> List[Dict[str, Any]]:
|
|
|
|
| 162 |
def _store_embeddings_batch(self, chunks: List[Dict[str, Any]]) -> int:
|
| 163 |
"""
|
| 164 |
Generate embeddings and store chunks in vector database
|
| 165 |
+
|
| 166 |
Args:
|
| 167 |
chunks: List of text chunks with metadata
|
| 168 |
+
|
| 169 |
Returns:
|
| 170 |
Number of embeddings stored successfully
|
| 171 |
"""
|
| 172 |
if not self.embedding_service or not self.vector_db:
|
| 173 |
return 0
|
| 174 |
+
|
| 175 |
stored_count = 0
|
| 176 |
batch_size = 32 # Process in batches for memory efficiency
|
| 177 |
+
|
| 178 |
for i in range(0, len(chunks), batch_size):
|
| 179 |
+
batch = chunks[i : i + batch_size]
|
| 180 |
+
|
| 181 |
try:
|
| 182 |
# Extract texts and prepare data for vector storage
|
| 183 |
texts = [chunk["content"] for chunk in batch]
|
| 184 |
chunk_ids = [chunk["metadata"]["chunk_id"] for chunk in batch]
|
| 185 |
metadatas = [chunk["metadata"] for chunk in batch]
|
| 186 |
+
|
| 187 |
# Generate embeddings for the batch
|
| 188 |
embeddings = self.embedding_service.embed_texts(texts)
|
| 189 |
+
|
| 190 |
# Store in vector database
|
| 191 |
self.vector_db.add_embeddings(
|
| 192 |
embeddings=embeddings,
|
| 193 |
chunk_ids=chunk_ids,
|
| 194 |
documents=texts,
|
| 195 |
+
metadatas=metadatas,
|
| 196 |
)
|
| 197 |
+
|
| 198 |
stored_count += len(batch)
|
| 199 |
+
print(
|
| 200 |
+
f"Stored embeddings for batch {i // batch_size + 1}: "
|
| 201 |
+
f"{len(batch)} chunks"
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
except Exception as e:
|
| 205 |
print(f"Warning: Failed to store batch {i // batch_size + 1}: {e}")
|
| 206 |
continue
|
| 207 |
+
|
| 208 |
return stored_count
|
tests/test_enhanced_app.py
CHANGED
|
@@ -16,24 +16,26 @@ class TestEnhancedIngestionEndpoint(unittest.TestCase):
|
|
| 16 |
|
| 17 |
def setUp(self):
|
| 18 |
"""Set up test fixtures"""
|
| 19 |
-
app.config[
|
| 20 |
self.app = app.test_client()
|
| 21 |
-
|
| 22 |
# Create temporary directory and files for testing
|
| 23 |
self.temp_dir = tempfile.mkdtemp()
|
| 24 |
self.test_dir = Path(self.temp_dir)
|
| 25 |
-
|
| 26 |
self.test_file = self.test_dir / "test.md"
|
| 27 |
-
self.test_file.write_text(
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def test_ingest_endpoint_with_embeddings_default(self):
|
| 30 |
"""Test ingestion endpoint with default embeddings enabled"""
|
| 31 |
-
with patch(
|
| 32 |
-
response = self.app.post(
|
| 33 |
-
|
| 34 |
self.assertEqual(response.status_code, 200)
|
| 35 |
data = json.loads(response.data)
|
| 36 |
-
|
| 37 |
# Check enhanced response structure
|
| 38 |
self.assertEqual(data["status"], "success")
|
| 39 |
self.assertIn("chunks_processed", data)
|
|
@@ -46,14 +48,16 @@ class TestEnhancedIngestionEndpoint(unittest.TestCase):
|
|
| 46 |
|
| 47 |
def test_ingest_endpoint_with_embeddings_disabled(self):
|
| 48 |
"""Test ingestion endpoint with embeddings disabled"""
|
| 49 |
-
with patch(
|
| 50 |
-
response = self.app.post(
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
self.assertEqual(response.status_code, 200)
|
| 55 |
data = json.loads(response.data)
|
| 56 |
-
|
| 57 |
# Check response structure with embeddings disabled
|
| 58 |
self.assertEqual(data["status"], "success")
|
| 59 |
self.assertIn("chunks_processed", data)
|
|
@@ -67,31 +71,32 @@ class TestEnhancedIngestionEndpoint(unittest.TestCase):
|
|
| 67 |
|
| 68 |
def test_ingest_endpoint_with_no_json(self):
|
| 69 |
"""Test ingestion endpoint with no JSON payload (should default to embeddings enabled)"""
|
| 70 |
-
with patch(
|
| 71 |
-
response = self.app.post(
|
| 72 |
-
|
| 73 |
self.assertEqual(response.status_code, 200)
|
| 74 |
data = json.loads(response.data)
|
| 75 |
-
|
| 76 |
# Should default to embeddings enabled
|
| 77 |
self.assertTrue(data["store_embeddings"])
|
| 78 |
|
| 79 |
def test_ingest_endpoint_error_handling(self):
|
| 80 |
"""Test ingestion endpoint error handling"""
|
| 81 |
-
with patch(
|
| 82 |
-
response = self.app.post(
|
| 83 |
-
|
| 84 |
self.assertEqual(response.status_code, 500)
|
| 85 |
data = json.loads(response.data)
|
| 86 |
-
|
| 87 |
self.assertEqual(data["status"], "error")
|
| 88 |
self.assertIn("message", data)
|
| 89 |
|
| 90 |
def tearDown(self):
|
| 91 |
"""Clean up test fixtures"""
|
| 92 |
import shutil
|
|
|
|
| 93 |
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
| 94 |
|
| 95 |
|
| 96 |
if __name__ == "__main__":
|
| 97 |
-
unittest.main()
|
|
|
|
| 16 |
|
| 17 |
def setUp(self):
|
| 18 |
"""Set up test fixtures"""
|
| 19 |
+
app.config["TESTING"] = True
|
| 20 |
self.app = app.test_client()
|
| 21 |
+
|
| 22 |
# Create temporary directory and files for testing
|
| 23 |
self.temp_dir = tempfile.mkdtemp()
|
| 24 |
self.test_dir = Path(self.temp_dir)
|
| 25 |
+
|
| 26 |
self.test_file = self.test_dir / "test.md"
|
| 27 |
+
self.test_file.write_text(
|
| 28 |
+
"# Test Document\n\nThis is test content for enhanced ingestion."
|
| 29 |
+
)
|
| 30 |
|
| 31 |
def test_ingest_endpoint_with_embeddings_default(self):
|
| 32 |
"""Test ingestion endpoint with default embeddings enabled"""
|
| 33 |
+
with patch("src.config.CORPUS_DIRECTORY", str(self.test_dir)):
|
| 34 |
+
response = self.app.post("/ingest")
|
| 35 |
+
|
| 36 |
self.assertEqual(response.status_code, 200)
|
| 37 |
data = json.loads(response.data)
|
| 38 |
+
|
| 39 |
# Check enhanced response structure
|
| 40 |
self.assertEqual(data["status"], "success")
|
| 41 |
self.assertIn("chunks_processed", data)
|
|
|
|
| 48 |
|
| 49 |
def test_ingest_endpoint_with_embeddings_disabled(self):
|
| 50 |
"""Test ingestion endpoint with embeddings disabled"""
|
| 51 |
+
with patch("src.config.CORPUS_DIRECTORY", str(self.test_dir)):
|
| 52 |
+
response = self.app.post(
|
| 53 |
+
"/ingest",
|
| 54 |
+
data=json.dumps({"store_embeddings": False}),
|
| 55 |
+
content_type="application/json",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
self.assertEqual(response.status_code, 200)
|
| 59 |
data = json.loads(response.data)
|
| 60 |
+
|
| 61 |
# Check response structure with embeddings disabled
|
| 62 |
self.assertEqual(data["status"], "success")
|
| 63 |
self.assertIn("chunks_processed", data)
|
|
|
|
| 71 |
|
| 72 |
def test_ingest_endpoint_with_no_json(self):
|
| 73 |
"""Test ingestion endpoint with no JSON payload (should default to embeddings enabled)"""
|
| 74 |
+
with patch("src.config.CORPUS_DIRECTORY", str(self.test_dir)):
|
| 75 |
+
response = self.app.post("/ingest")
|
| 76 |
+
|
| 77 |
self.assertEqual(response.status_code, 200)
|
| 78 |
data = json.loads(response.data)
|
| 79 |
+
|
| 80 |
# Should default to embeddings enabled
|
| 81 |
self.assertTrue(data["store_embeddings"])
|
| 82 |
|
| 83 |
def test_ingest_endpoint_error_handling(self):
|
| 84 |
"""Test ingestion endpoint error handling"""
|
| 85 |
+
with patch("src.config.CORPUS_DIRECTORY", "/nonexistent/directory"):
|
| 86 |
+
response = self.app.post("/ingest")
|
| 87 |
+
|
| 88 |
self.assertEqual(response.status_code, 500)
|
| 89 |
data = json.loads(response.data)
|
| 90 |
+
|
| 91 |
self.assertEqual(data["status"], "error")
|
| 92 |
self.assertIn("message", data)
|
| 93 |
|
| 94 |
def tearDown(self):
|
| 95 |
"""Clean up test fixtures"""
|
| 96 |
import shutil
|
| 97 |
+
|
| 98 |
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
| 99 |
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
+
unittest.main()
|
tests/test_ingestion/test_enhanced_ingestion_pipeline.py
CHANGED
|
@@ -17,14 +17,16 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 17 |
"""Set up test fixtures"""
|
| 18 |
self.temp_dir = tempfile.mkdtemp()
|
| 19 |
self.test_dir = Path(self.temp_dir)
|
| 20 |
-
|
| 21 |
# Create test files
|
| 22 |
self.test_file1 = self.test_dir / "test1.md"
|
| 23 |
-
self.test_file1.write_text(
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
self.test_file2 = self.test_dir / "test2.txt"
|
| 26 |
self.test_file2.write_text("This is test content for document 2.")
|
| 27 |
-
|
| 28 |
# Create an unsupported file (should be skipped)
|
| 29 |
self.test_file3 = self.test_dir / "test3.pdf"
|
| 30 |
self.test_file3.write_text("PDF content")
|
|
@@ -32,7 +34,7 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 32 |
def test_initialization_without_embeddings(self):
|
| 33 |
"""Test pipeline initialization without embeddings"""
|
| 34 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 35 |
-
|
| 36 |
self.assertIsNotNone(pipeline.parser)
|
| 37 |
self.assertIsNotNone(pipeline.chunker)
|
| 38 |
self.assertFalse(pipeline.store_embeddings)
|
|
@@ -42,7 +44,7 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 42 |
def test_initialization_with_embeddings(self):
|
| 43 |
"""Test pipeline initialization with embeddings"""
|
| 44 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 45 |
-
|
| 46 |
self.assertIsNotNone(pipeline.parser)
|
| 47 |
self.assertIsNotNone(pipeline.chunker)
|
| 48 |
self.assertTrue(pipeline.store_embeddings)
|
|
@@ -53,13 +55,13 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 53 |
"""Test pipeline initialization with custom embedding components"""
|
| 54 |
mock_embedding_service = Mock()
|
| 55 |
mock_vector_db = Mock()
|
| 56 |
-
|
| 57 |
pipeline = IngestionPipeline(
|
| 58 |
store_embeddings=True,
|
| 59 |
embedding_service=mock_embedding_service,
|
| 60 |
-
vector_db=mock_vector_db
|
| 61 |
)
|
| 62 |
-
|
| 63 |
self.assertEqual(pipeline.embedding_service, mock_embedding_service)
|
| 64 |
self.assertEqual(pipeline.vector_db, mock_vector_db)
|
| 65 |
|
|
@@ -67,7 +69,7 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 67 |
"""Test directory processing without embeddings"""
|
| 68 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 69 |
result = pipeline.process_directory_with_embeddings(str(self.test_dir))
|
| 70 |
-
|
| 71 |
# Check response structure
|
| 72 |
self.assertIsInstance(result, dict)
|
| 73 |
self.assertEqual(result["status"], "success")
|
|
@@ -77,25 +79,30 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 77 |
self.assertFalse(result["store_embeddings"])
|
| 78 |
self.assertIn("chunks", result)
|
| 79 |
|
| 80 |
-
@patch(
|
| 81 |
-
@patch(
|
| 82 |
-
def test_process_directory_with_embeddings(
|
|
|
|
|
|
|
| 83 |
"""Test directory processing with embeddings"""
|
| 84 |
# Mock the classes to return mock instances
|
| 85 |
mock_embedding_service = Mock()
|
| 86 |
mock_vector_db = Mock()
|
| 87 |
mock_embedding_service_class.return_value = mock_embedding_service
|
| 88 |
mock_vector_db_class.return_value = mock_vector_db
|
| 89 |
-
|
| 90 |
# Configure mock embedding service
|
| 91 |
-
mock_embedding_service.embed_texts.return_value = [
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
| 93 |
# Configure mock vector database
|
| 94 |
mock_vector_db.add_embeddings.return_value = True
|
| 95 |
-
|
| 96 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 97 |
result = pipeline.process_directory_with_embeddings(str(self.test_dir))
|
| 98 |
-
|
| 99 |
# Check response structure
|
| 100 |
self.assertIsInstance(result, dict)
|
| 101 |
self.assertEqual(result["status"], "success")
|
|
@@ -103,7 +110,7 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 103 |
self.assertEqual(result["files_processed"], 2)
|
| 104 |
self.assertGreater(result["embeddings_stored"], 0)
|
| 105 |
self.assertTrue(result["store_embeddings"])
|
| 106 |
-
|
| 107 |
# Verify embedding service was called
|
| 108 |
mock_embedding_service.embed_texts.assert_called()
|
| 109 |
mock_vector_db.add_embeddings.assert_called()
|
|
@@ -111,82 +118,89 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 111 |
def test_process_directory_nonexistent(self):
|
| 112 |
"""Test processing non-existent directory"""
|
| 113 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 114 |
-
|
| 115 |
with self.assertRaises(FileNotFoundError):
|
| 116 |
pipeline.process_directory("/nonexistent/directory")
|
| 117 |
|
| 118 |
def test_store_embeddings_batch_without_components(self):
|
| 119 |
"""Test batch embedding storage without embedding components"""
|
| 120 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 121 |
-
|
| 122 |
chunks = [
|
| 123 |
{
|
| 124 |
"content": "Test content 1",
|
| 125 |
-
"metadata": {"chunk_id": "test1", "source": "test1.txt"}
|
| 126 |
}
|
| 127 |
]
|
| 128 |
-
|
| 129 |
result = pipeline._store_embeddings_batch(chunks)
|
| 130 |
self.assertEqual(result, 0)
|
| 131 |
|
| 132 |
-
@patch(
|
| 133 |
-
@patch(
|
| 134 |
-
def test_store_embeddings_batch_success(
|
|
|
|
|
|
|
| 135 |
"""Test successful batch embedding storage"""
|
| 136 |
# Mock the classes to return mock instances
|
| 137 |
mock_embedding_service = Mock()
|
| 138 |
mock_vector_db = Mock()
|
| 139 |
mock_embedding_service_class.return_value = mock_embedding_service
|
| 140 |
mock_vector_db_class.return_value = mock_vector_db
|
| 141 |
-
|
| 142 |
# Configure mocks
|
| 143 |
-
mock_embedding_service.embed_texts.return_value = [
|
|
|
|
|
|
|
|
|
|
| 144 |
mock_vector_db.add_embeddings.return_value = True
|
| 145 |
-
|
| 146 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 147 |
-
|
| 148 |
chunks = [
|
| 149 |
{
|
| 150 |
"content": "Test content 1",
|
| 151 |
-
"metadata": {"chunk_id": "test1", "source": "test1.txt"}
|
| 152 |
},
|
| 153 |
{
|
| 154 |
"content": "Test content 2",
|
| 155 |
-
"metadata": {"chunk_id": "test2", "source": "test2.txt"}
|
| 156 |
-
}
|
| 157 |
]
|
| 158 |
-
|
| 159 |
result = pipeline._store_embeddings_batch(chunks)
|
| 160 |
self.assertEqual(result, 2)
|
| 161 |
-
|
| 162 |
# Verify method calls
|
| 163 |
mock_embedding_service.embed_texts.assert_called_once_with(
|
| 164 |
["Test content 1", "Test content 2"]
|
| 165 |
)
|
| 166 |
mock_vector_db.add_embeddings.assert_called_once()
|
| 167 |
|
| 168 |
-
@patch(
|
| 169 |
-
@patch(
|
| 170 |
-
def test_store_embeddings_batch_error_handling(
|
|
|
|
|
|
|
| 171 |
"""Test error handling in batch embedding storage"""
|
| 172 |
# Mock the classes to return mock instances
|
| 173 |
mock_embedding_service = Mock()
|
| 174 |
mock_vector_db = Mock()
|
| 175 |
mock_embedding_service_class.return_value = mock_embedding_service
|
| 176 |
mock_vector_db_class.return_value = mock_vector_db
|
| 177 |
-
|
| 178 |
# Configure embedding service to raise an error
|
| 179 |
mock_embedding_service.embed_texts.side_effect = Exception("Embedding error")
|
| 180 |
-
|
| 181 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 182 |
-
|
| 183 |
chunks = [
|
| 184 |
{
|
| 185 |
"content": "Test content 1",
|
| 186 |
-
"metadata": {"chunk_id": "test1", "source": "test1.txt"}
|
| 187 |
}
|
| 188 |
]
|
| 189 |
-
|
| 190 |
# Should handle error gracefully and return 0
|
| 191 |
result = pipeline._store_embeddings_batch(chunks)
|
| 192 |
self.assertEqual(result, 0)
|
|
@@ -195,11 +209,11 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 195 |
"""Test that enhanced pipeline maintains backward compatibility"""
|
| 196 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 197 |
result = pipeline.process_directory(str(self.test_dir))
|
| 198 |
-
|
| 199 |
# Should return list for backward compatibility
|
| 200 |
self.assertIsInstance(result, list)
|
| 201 |
self.assertGreater(len(result), 0)
|
| 202 |
-
|
| 203 |
# First chunk should have expected structure
|
| 204 |
chunk = result[0]
|
| 205 |
self.assertIn("content", chunk)
|
|
@@ -209,8 +223,9 @@ class TestEnhancedIngestionPipeline(unittest.TestCase):
|
|
| 209 |
def tearDown(self):
|
| 210 |
"""Clean up test fixtures"""
|
| 211 |
import shutil
|
|
|
|
| 212 |
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
| 213 |
|
| 214 |
|
| 215 |
if __name__ == "__main__":
|
| 216 |
-
unittest.main()
|
|
|
|
| 17 |
"""Set up test fixtures"""
|
| 18 |
self.temp_dir = tempfile.mkdtemp()
|
| 19 |
self.test_dir = Path(self.temp_dir)
|
| 20 |
+
|
| 21 |
# Create test files
|
| 22 |
self.test_file1 = self.test_dir / "test1.md"
|
| 23 |
+
self.test_file1.write_text(
|
| 24 |
+
"# Test Document 1\n\nThis is test content for document 1."
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
self.test_file2 = self.test_dir / "test2.txt"
|
| 28 |
self.test_file2.write_text("This is test content for document 2.")
|
| 29 |
+
|
| 30 |
# Create an unsupported file (should be skipped)
|
| 31 |
self.test_file3 = self.test_dir / "test3.pdf"
|
| 32 |
self.test_file3.write_text("PDF content")
|
|
|
|
| 34 |
def test_initialization_without_embeddings(self):
|
| 35 |
"""Test pipeline initialization without embeddings"""
|
| 36 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 37 |
+
|
| 38 |
self.assertIsNotNone(pipeline.parser)
|
| 39 |
self.assertIsNotNone(pipeline.chunker)
|
| 40 |
self.assertFalse(pipeline.store_embeddings)
|
|
|
|
| 44 |
def test_initialization_with_embeddings(self):
|
| 45 |
"""Test pipeline initialization with embeddings"""
|
| 46 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 47 |
+
|
| 48 |
self.assertIsNotNone(pipeline.parser)
|
| 49 |
self.assertIsNotNone(pipeline.chunker)
|
| 50 |
self.assertTrue(pipeline.store_embeddings)
|
|
|
|
| 55 |
"""Test pipeline initialization with custom embedding components"""
|
| 56 |
mock_embedding_service = Mock()
|
| 57 |
mock_vector_db = Mock()
|
| 58 |
+
|
| 59 |
pipeline = IngestionPipeline(
|
| 60 |
store_embeddings=True,
|
| 61 |
embedding_service=mock_embedding_service,
|
| 62 |
+
vector_db=mock_vector_db,
|
| 63 |
)
|
| 64 |
+
|
| 65 |
self.assertEqual(pipeline.embedding_service, mock_embedding_service)
|
| 66 |
self.assertEqual(pipeline.vector_db, mock_vector_db)
|
| 67 |
|
|
|
|
| 69 |
"""Test directory processing without embeddings"""
|
| 70 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 71 |
result = pipeline.process_directory_with_embeddings(str(self.test_dir))
|
| 72 |
+
|
| 73 |
# Check response structure
|
| 74 |
self.assertIsInstance(result, dict)
|
| 75 |
self.assertEqual(result["status"], "success")
|
|
|
|
| 79 |
self.assertFalse(result["store_embeddings"])
|
| 80 |
self.assertIn("chunks", result)
|
| 81 |
|
| 82 |
+
@patch("src.ingestion.ingestion_pipeline.VectorDatabase")
|
| 83 |
+
@patch("src.ingestion.ingestion_pipeline.EmbeddingService")
|
| 84 |
+
def test_process_directory_with_embeddings(
|
| 85 |
+
self, mock_embedding_service_class, mock_vector_db_class
|
| 86 |
+
):
|
| 87 |
"""Test directory processing with embeddings"""
|
| 88 |
# Mock the classes to return mock instances
|
| 89 |
mock_embedding_service = Mock()
|
| 90 |
mock_vector_db = Mock()
|
| 91 |
mock_embedding_service_class.return_value = mock_embedding_service
|
| 92 |
mock_vector_db_class.return_value = mock_vector_db
|
| 93 |
+
|
| 94 |
# Configure mock embedding service
|
| 95 |
+
mock_embedding_service.embed_texts.return_value = [
|
| 96 |
+
[0.1, 0.2, 0.3],
|
| 97 |
+
[0.4, 0.5, 0.6],
|
| 98 |
+
]
|
| 99 |
+
|
| 100 |
# Configure mock vector database
|
| 101 |
mock_vector_db.add_embeddings.return_value = True
|
| 102 |
+
|
| 103 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 104 |
result = pipeline.process_directory_with_embeddings(str(self.test_dir))
|
| 105 |
+
|
| 106 |
# Check response structure
|
| 107 |
self.assertIsInstance(result, dict)
|
| 108 |
self.assertEqual(result["status"], "success")
|
|
|
|
| 110 |
self.assertEqual(result["files_processed"], 2)
|
| 111 |
self.assertGreater(result["embeddings_stored"], 0)
|
| 112 |
self.assertTrue(result["store_embeddings"])
|
| 113 |
+
|
| 114 |
# Verify embedding service was called
|
| 115 |
mock_embedding_service.embed_texts.assert_called()
|
| 116 |
mock_vector_db.add_embeddings.assert_called()
|
|
|
|
| 118 |
def test_process_directory_nonexistent(self):
|
| 119 |
"""Test processing non-existent directory"""
|
| 120 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 121 |
+
|
| 122 |
with self.assertRaises(FileNotFoundError):
|
| 123 |
pipeline.process_directory("/nonexistent/directory")
|
| 124 |
|
| 125 |
def test_store_embeddings_batch_without_components(self):
|
| 126 |
"""Test batch embedding storage without embedding components"""
|
| 127 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 128 |
+
|
| 129 |
chunks = [
|
| 130 |
{
|
| 131 |
"content": "Test content 1",
|
| 132 |
+
"metadata": {"chunk_id": "test1", "source": "test1.txt"},
|
| 133 |
}
|
| 134 |
]
|
| 135 |
+
|
| 136 |
result = pipeline._store_embeddings_batch(chunks)
|
| 137 |
self.assertEqual(result, 0)
|
| 138 |
|
| 139 |
+
@patch("src.ingestion.ingestion_pipeline.VectorDatabase")
|
| 140 |
+
@patch("src.ingestion.ingestion_pipeline.EmbeddingService")
|
| 141 |
+
def test_store_embeddings_batch_success(
|
| 142 |
+
self, mock_embedding_service_class, mock_vector_db_class
|
| 143 |
+
):
|
| 144 |
"""Test successful batch embedding storage"""
|
| 145 |
# Mock the classes to return mock instances
|
| 146 |
mock_embedding_service = Mock()
|
| 147 |
mock_vector_db = Mock()
|
| 148 |
mock_embedding_service_class.return_value = mock_embedding_service
|
| 149 |
mock_vector_db_class.return_value = mock_vector_db
|
| 150 |
+
|
| 151 |
# Configure mocks
|
| 152 |
+
mock_embedding_service.embed_texts.return_value = [
|
| 153 |
+
[0.1, 0.2, 0.3],
|
| 154 |
+
[0.4, 0.5, 0.6],
|
| 155 |
+
]
|
| 156 |
mock_vector_db.add_embeddings.return_value = True
|
| 157 |
+
|
| 158 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 159 |
+
|
| 160 |
chunks = [
|
| 161 |
{
|
| 162 |
"content": "Test content 1",
|
| 163 |
+
"metadata": {"chunk_id": "test1", "source": "test1.txt"},
|
| 164 |
},
|
| 165 |
{
|
| 166 |
"content": "Test content 2",
|
| 167 |
+
"metadata": {"chunk_id": "test2", "source": "test2.txt"},
|
| 168 |
+
},
|
| 169 |
]
|
| 170 |
+
|
| 171 |
result = pipeline._store_embeddings_batch(chunks)
|
| 172 |
self.assertEqual(result, 2)
|
| 173 |
+
|
| 174 |
# Verify method calls
|
| 175 |
mock_embedding_service.embed_texts.assert_called_once_with(
|
| 176 |
["Test content 1", "Test content 2"]
|
| 177 |
)
|
| 178 |
mock_vector_db.add_embeddings.assert_called_once()
|
| 179 |
|
| 180 |
+
@patch("src.ingestion.ingestion_pipeline.VectorDatabase")
|
| 181 |
+
@patch("src.ingestion.ingestion_pipeline.EmbeddingService")
|
| 182 |
+
def test_store_embeddings_batch_error_handling(
|
| 183 |
+
self, mock_embedding_service_class, mock_vector_db_class
|
| 184 |
+
):
|
| 185 |
"""Test error handling in batch embedding storage"""
|
| 186 |
# Mock the classes to return mock instances
|
| 187 |
mock_embedding_service = Mock()
|
| 188 |
mock_vector_db = Mock()
|
| 189 |
mock_embedding_service_class.return_value = mock_embedding_service
|
| 190 |
mock_vector_db_class.return_value = mock_vector_db
|
| 191 |
+
|
| 192 |
# Configure embedding service to raise an error
|
| 193 |
mock_embedding_service.embed_texts.side_effect = Exception("Embedding error")
|
| 194 |
+
|
| 195 |
pipeline = IngestionPipeline(store_embeddings=True)
|
| 196 |
+
|
| 197 |
chunks = [
|
| 198 |
{
|
| 199 |
"content": "Test content 1",
|
| 200 |
+
"metadata": {"chunk_id": "test1", "source": "test1.txt"},
|
| 201 |
}
|
| 202 |
]
|
| 203 |
+
|
| 204 |
# Should handle error gracefully and return 0
|
| 205 |
result = pipeline._store_embeddings_batch(chunks)
|
| 206 |
self.assertEqual(result, 0)
|
|
|
|
| 209 |
"""Test that enhanced pipeline maintains backward compatibility"""
|
| 210 |
pipeline = IngestionPipeline(store_embeddings=False)
|
| 211 |
result = pipeline.process_directory(str(self.test_dir))
|
| 212 |
+
|
| 213 |
# Should return list for backward compatibility
|
| 214 |
self.assertIsInstance(result, list)
|
| 215 |
self.assertGreater(len(result), 0)
|
| 216 |
+
|
| 217 |
# First chunk should have expected structure
|
| 218 |
chunk = result[0]
|
| 219 |
self.assertIn("content", chunk)
|
|
|
|
| 223 |
def tearDown(self):
|
| 224 |
"""Clean up test fixtures"""
|
| 225 |
import shutil
|
| 226 |
+
|
| 227 |
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
| 228 |
|
| 229 |
|
| 230 |
if __name__ == "__main__":
|
| 231 |
+
unittest.main()
|