File size: 7,538 Bytes
cb41d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st
import pandas as pd
import numpy as np
import requests
from bs4 import BeautifulSoup
import folium
from streamlit_folium import folium_static
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
import json
import csv
from io import StringIO

# Page configuration
st.set_page_config(layout="wide", page_title="Pakistan Climate & Disaster Monitor")

class DataCollector:
    @staticmethod
    def fetch_usgs_earthquake_data():
        """Fetch earthquake data from USGS website (free, no API key needed)"""
        url = "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.geojson"
        try:
            response = requests.get(url)
            data = response.json()
            # Filter for Pakistan region
            pakistan_data = {
                "type": "FeatureCollection",
                "features": [
                    feature for feature in data["features"]
                    if 60.878 <= feature["geometry"]["coordinates"][0] <= 77.840
                    and 23.692 <= feature["geometry"]["coordinates"][1] <= 37.097
                ]
            }
            return pakistan_data
        except Exception as e:
            st.error(f"Error fetching earthquake data: {e}")
            return None

    @staticmethod
    def fetch_weather_data():
        """Fetch weather data from WorldBank Climate Data (free dataset)"""
        url = "https://climateknowledgeportal.worldbank.org/api/data/get-download-data"
        params = {
            "region": "South Asia",
            "country": "Pakistan"
        }
        try:
            response = requests.post(url, data=params)
            df = pd.read_csv(StringIO(response.text))
            return df
        except Exception as e:
            st.error(f"Error fetching weather data: {e}")
            return None

def create_dashboard():
    st.title("Pakistan Climate & Disaster Monitoring System")
    
    # Sidebar for navigation
    page = st.sidebar.selectbox(
        "Select Module",
        ["Climate Analysis", "Disaster Monitor", "Risk Assessment", "Environmental Data"]
    )
    
    if page == "Climate Analysis":
        show_climate_analysis()
    elif page == "Disaster Monitor":
        show_disaster_monitor()
    elif page == "Risk Assessment":
        show_risk_assessment()
    elif page == "Environmental Data":
        show_environmental_data()

def show_climate_analysis():
    st.header("Climate Analysis")
    
    # Historical temperature data from World Bank dataset
    data_collector = DataCollector()
    climate_data = data_collector.fetch_weather_data()
    
    if climate_data is not None:
        col1, col2 = st.columns(2)
        
        with col1:
            # Temperature trends
            fig = px.line(climate_data, 
                         x='Year', 
                         y='Temperature',
                         title='Historical Temperature Trends')
            st.plotly_chart(fig)
        
        with col2:
            # Precipitation patterns
            fig = px.bar(climate_data, 
                        x='Year', 
                        y='Precipitation',
                        title='Annual Precipitation')
            st.plotly_chart(fig)
        
        # Climate indicators
        st.subheader("Climate Indicators")
        cols = st.columns(3)
        
        with cols[0]:
            avg_temp = climate_data['Temperature'].mean()
            st.metric("Average Temperature", f"{avg_temp:.1f}°C")
        
        with cols[1]:
            avg_precip = climate_data['Precipitation'].mean()
            st.metric("Average Precipitation", f"{avg_precip:.1f}mm")
        
        with cols[2]:
            temp_trend = climate_data['Temperature'].diff().mean()
            st.metric("Temperature Trend", f"{temp_trend:+.2f}°C/year")

def show_disaster_monitor():
    st.header("Disaster Monitoring")
    
    # Fetch earthquake data
    data_collector = DataCollector()
    earthquake_data = data_collector.fetch_usgs_earthquake_data()
    
    if earthquake_data:
        # Create map
        m = folium.Map(location=[30.3753, 69.3451], zoom_start=5)
        
        for eq in earthquake_data['features']:
            coords = eq['geometry']['coordinates']
            mag = eq['properties']['mag']
            
            folium.CircleMarker(
                location=[coords[1], coords[0]],
                radius=mag * 3,
                color='red',
                fill=True,
                popup=f"Magnitude: {mag}",
            ).add_to(m)
        
        st.subheader("Recent Earthquakes Map")
        folium_static(m)
        
        # Recent earthquakes list
        st.subheader("Recent Earthquakes")
        eq_df = pd.DataFrame([
            {
                'Time': datetime.fromtimestamp(eq['properties']['time']/1000),
                'Magnitude': eq['properties']['mag'],
                'Location': eq['properties']['place']
            }
            for eq in earthquake_data['features']
        ])
        st.dataframe(eq_df)

def show_risk_assessment():
    st.header("Risk Assessment")
    
    # Sample risk data (could be enhanced with real historical data)
    risk_data = pd.DataFrame({
        'Region': ['Punjab', 'Sindh', 'KPK', 'Balochistan', 'Gilgit-Baltistan'],
        'Flood_Risk': np.random.uniform(0, 1, 5),
        'Drought_Risk': np.random.uniform(0, 1, 5),
        'Earthquake_Risk': np.random.uniform(0, 1, 5)
    })
    
    # Risk heatmap
    fig = go.Figure(data=go.Heatmap(
        z=[risk_data[col] for col in ['Flood_Risk', 'Drought_Risk', 'Earthquake_Risk']],
        x=risk_data['Region'],
        y=['Flood', 'Drought', 'Earthquake'],
        colorscale='RdYlBu_r'
    ))
    fig.update_layout(title='Regional Risk Assessment Heatmap')
    st.plotly_chart(fig)
    
    # Risk analysis
    st.subheader("Risk Analysis by Region")
    selected_region = st.selectbox("Select Region", risk_data['Region'])
    region_data = risk_data[risk_data['Region'] == selected_region].iloc[0]
    
    cols = st.columns(3)
    with cols[0]:
        st.metric("Flood Risk", f"{region_data['Flood_Risk']:.2%}")
    with cols[1]:
        st.metric("Drought Risk", f"{region_data['Drought_Risk']:.2%}")
    with cols[2]:
        st.metric("Earthquake Risk", f"{region_data['Earthquake_Risk']:.2%}")

def show_environmental_data():
    st.header("Environmental Data")
    
    # Sample environmental data (could be enhanced with real data sources)
    dates = pd.date_range(start='2023-01-01', periods=365, freq='D')
    env_data = pd.DataFrame({
        'Date': dates,
        'Temperature': np.random.normal(25, 5, 365),
        'Humidity': np.random.normal(60, 10, 365),
        'Air_Quality': np.random.normal(50, 20, 365)
    })
    
    # Environmental indicators
    st.subheader("Environmental Indicators")
    metric = st.selectbox("Select Indicator", ['Temperature', 'Humidity', 'Air_Quality'])
    
    fig = px.line(env_data, x='Date', y=metric,
                  title=f'{metric} Over Time')
    st.plotly_chart(fig)
    
    # Current conditions
    st.subheader("Current Conditions")
    cols = st.columns(3)
    with cols[0]:
        st.metric("Temperature", f"{env_data['Temperature'].iloc[-1]:.1f}°C")
    with cols[1]:
        st.metric("Humidity", f"{env_data['Humidity'].iloc[-1]:.1f}%")
    with cols[2]:
        st.metric("Air Quality Index", f"{env_data['Air_Quality'].iloc[-1]:.0f}")

if __name__ == "__main__":
    create_dashboard()