Update app.py
Browse files
app.py
CHANGED
|
@@ -10,19 +10,33 @@ import plotly.graph_objects as go
|
|
| 10 |
from datetime import datetime, timedelta
|
| 11 |
import json
|
| 12 |
from io import StringIO
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Page configuration
|
| 15 |
st.set_page_config(layout="wide", page_title="Pakistan Climate & Disaster Monitor")
|
| 16 |
|
| 17 |
class DataCollector:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
url = "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.geojson"
|
| 22 |
try:
|
| 23 |
response = requests.get(url)
|
| 24 |
data = response.json()
|
| 25 |
-
# Filter for Pakistan region
|
| 26 |
pakistan_data = {
|
| 27 |
"type": "FeatureCollection",
|
| 28 |
"features": [
|
|
@@ -36,149 +50,253 @@ class DataCollector:
|
|
| 36 |
st.error(f"Error fetching earthquake data: {e}")
|
| 37 |
return None
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
"""Fetch weather data from OpenMeteo (free, no API required)"""
|
| 42 |
-
# Multiple cities in Pakistan
|
| 43 |
-
cities = {
|
| 44 |
-
'Islamabad': {'lat': 33.7294, 'lon': 73.0931},
|
| 45 |
-
'Karachi': {'lat': 24.8607, 'lon': 67.0011},
|
| 46 |
-
'Lahore': {'lat': 31.5204, 'lon': 74.3587},
|
| 47 |
-
'Peshawar': {'lat': 34.0151, 'lon': 71.5249},
|
| 48 |
-
'Quetta': {'lat': 30.1798, 'lon': 66.9750}
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
weather_data = []
|
| 52 |
-
for city, coords in cities.items():
|
| 53 |
-
url = f"https://api.open-meteo.com/v1/forecast?latitude={coords['lat']}&longitude={coords['lon']}&daily=temperature_2m_max,temperature_2m_min,precipitation_sum&timezone=auto"
|
| 54 |
try:
|
| 55 |
response = requests.get(url)
|
| 56 |
data = response.json()
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
'
|
| 61 |
-
'
|
| 62 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
})
|
| 64 |
-
weather_data.append(df)
|
| 65 |
except Exception as e:
|
| 66 |
-
st.error(f"Error fetching data for {city}: {e}")
|
| 67 |
continue
|
| 68 |
|
| 69 |
-
if weather_data
|
| 70 |
-
return pd.concat(weather_data, ignore_index=True)
|
| 71 |
-
return None
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
"""Fetch air quality data from OpenMeteo Air Quality API (free)"""
|
| 76 |
-
cities = {
|
| 77 |
-
'Islamabad': {'lat': 33.7294, 'lon': 73.0931},
|
| 78 |
-
'Karachi': {'lat': 24.8607, 'lon': 67.0011},
|
| 79 |
-
'Lahore': {'lat': 31.5204, 'lon': 74.3587}
|
| 80 |
-
}
|
| 81 |
-
|
| 82 |
aqi_data = []
|
| 83 |
-
for city, coords in cities.items():
|
| 84 |
-
url = f"https://air-quality-api.open-meteo.com/v1/air-quality?latitude={coords['lat']}&longitude={coords['lon']}&hourly=pm10,pm2_5,carbon_monoxide&timezone=auto"
|
| 85 |
try:
|
| 86 |
response = requests.get(url)
|
| 87 |
data = response.json()
|
| 88 |
df = pd.DataFrame({
|
| 89 |
-
'
|
| 90 |
'PM10': data['hourly']['pm10'],
|
| 91 |
'PM2.5': data['hourly']['pm2_5'],
|
| 92 |
'CO': data['hourly']['carbon_monoxide'],
|
| 93 |
-
'
|
|
|
|
|
|
|
| 94 |
})
|
| 95 |
aqi_data.append(df)
|
| 96 |
except Exception as e:
|
| 97 |
st.error(f"Error fetching AQI data for {city}: {e}")
|
| 98 |
continue
|
| 99 |
|
| 100 |
-
if aqi_data
|
| 101 |
-
return pd.concat(aqi_data, ignore_index=True)
|
| 102 |
-
return None
|
| 103 |
|
| 104 |
-
def
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
data_collector = DataCollector()
|
| 108 |
weather_data = data_collector.fetch_weather_data()
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
title=f'Daily Precipitation - {selected_city}')
|
| 131 |
-
st.plotly_chart(fig)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
with
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
def show_environmental_data():
|
| 146 |
st.header("Environmental Data")
|
| 147 |
|
| 148 |
-
data_collector = DataCollector()
|
| 149 |
aqi_data = data_collector.fetch_air_quality_data()
|
| 150 |
|
| 151 |
if aqi_data is not None:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
st.
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
if __name__ == "__main__":
|
| 184 |
-
|
|
|
|
| 10 |
from datetime import datetime, timedelta
|
| 11 |
import json
|
| 12 |
from io import StringIO
|
| 13 |
+
import streamlit.components.v1 as components
|
| 14 |
+
import base64
|
| 15 |
|
| 16 |
# Page configuration
|
| 17 |
st.set_page_config(layout="wide", page_title="Pakistan Climate & Disaster Monitor")
|
| 18 |
|
| 19 |
class DataCollector:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.cities = {
|
| 22 |
+
'Islamabad': {'lat': 33.7294, 'lon': 73.0931},
|
| 23 |
+
'Karachi': {'lat': 24.8607, 'lon': 67.0011},
|
| 24 |
+
'Lahore': {'lat': 31.5204, 'lon': 74.3587},
|
| 25 |
+
'Peshawar': {'lat': 34.0151, 'lon': 71.5249},
|
| 26 |
+
'Quetta': {'lat': 30.1798, 'lon': 66.9750},
|
| 27 |
+
'Multan': {'lat': 30.1575, 'lon': 71.5249},
|
| 28 |
+
'Faisalabad': {'lat': 31.4504, 'lon': 73.1350},
|
| 29 |
+
'Rawalpindi': {'lat': 33.6007, 'lon': 73.0679},
|
| 30 |
+
'Gwadar': {'lat': 25.1216, 'lon': 62.3254},
|
| 31 |
+
'Hyderabad': {'lat': 25.3960, 'lon': 68.3578}
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
def fetch_usgs_earthquake_data(self):
|
| 35 |
+
"""Fetch earthquake data from USGS website"""
|
| 36 |
url = "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.geojson"
|
| 37 |
try:
|
| 38 |
response = requests.get(url)
|
| 39 |
data = response.json()
|
|
|
|
| 40 |
pakistan_data = {
|
| 41 |
"type": "FeatureCollection",
|
| 42 |
"features": [
|
|
|
|
| 50 |
st.error(f"Error fetching earthquake data: {e}")
|
| 51 |
return None
|
| 52 |
|
| 53 |
+
def fetch_weather_data(self):
|
| 54 |
+
"""Fetch weather data from OpenMeteo"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
weather_data = []
|
| 56 |
+
for city, coords in self.cities.items():
|
| 57 |
+
url = f"https://api.open-meteo.com/v1/forecast?latitude={coords['lat']}&longitude={coords['lon']}&hourly=temperature_2m,relativehumidity_2m,precipitation,windspeed_10m&daily=temperature_2m_max,temperature_2m_min,precipitation_sum&timezone=auto"
|
| 58 |
try:
|
| 59 |
response = requests.get(url)
|
| 60 |
data = response.json()
|
| 61 |
+
|
| 62 |
+
# Hourly data
|
| 63 |
+
hourly_df = pd.DataFrame({
|
| 64 |
+
'datetime': pd.to_datetime(data['hourly']['time']),
|
| 65 |
+
'temperature': data['hourly']['temperature_2m'],
|
| 66 |
+
'humidity': data['hourly']['relativehumidity_2m'],
|
| 67 |
+
'precipitation': data['hourly']['precipitation'],
|
| 68 |
+
'wind_speed': data['hourly']['windspeed_10m']
|
| 69 |
+
})
|
| 70 |
+
|
| 71 |
+
# Daily data
|
| 72 |
+
daily_df = pd.DataFrame({
|
| 73 |
+
'date': pd.to_datetime(data['daily']['time']),
|
| 74 |
+
'temp_max': data['daily']['temperature_2m_max'],
|
| 75 |
+
'temp_min': data['daily']['temperature_2m_min'],
|
| 76 |
+
'precipitation_sum': data['daily']['precipitation_sum']
|
| 77 |
+
})
|
| 78 |
+
|
| 79 |
+
weather_data.append({
|
| 80 |
+
'city': city,
|
| 81 |
+
'hourly': hourly_df,
|
| 82 |
+
'daily': daily_df,
|
| 83 |
+
'coords': coords
|
| 84 |
})
|
|
|
|
| 85 |
except Exception as e:
|
| 86 |
+
st.error(f"Error fetching weather data for {city}: {e}")
|
| 87 |
continue
|
| 88 |
|
| 89 |
+
return weather_data if weather_data else None
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
def fetch_air_quality_data(self):
|
| 92 |
+
"""Fetch air quality data from OpenMeteo"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
aqi_data = []
|
| 94 |
+
for city, coords in self.cities.items():
|
| 95 |
+
url = f"https://air-quality-api.open-meteo.com/v1/air-quality?latitude={coords['lat']}&longitude={coords['lon']}&hourly=pm10,pm2_5,carbon_monoxide,nitrogen_dioxide,ozone&timezone=auto"
|
| 96 |
try:
|
| 97 |
response = requests.get(url)
|
| 98 |
data = response.json()
|
| 99 |
df = pd.DataFrame({
|
| 100 |
+
'datetime': pd.to_datetime(data['hourly']['time']),
|
| 101 |
'PM10': data['hourly']['pm10'],
|
| 102 |
'PM2.5': data['hourly']['pm2_5'],
|
| 103 |
'CO': data['hourly']['carbon_monoxide'],
|
| 104 |
+
'NO2': data['hourly']['nitrogen_dioxide'],
|
| 105 |
+
'O3': data['hourly']['ozone'],
|
| 106 |
+
'city': city
|
| 107 |
})
|
| 108 |
aqi_data.append(df)
|
| 109 |
except Exception as e:
|
| 110 |
st.error(f"Error fetching AQI data for {city}: {e}")
|
| 111 |
continue
|
| 112 |
|
| 113 |
+
return pd.concat(aqi_data, ignore_index=True) if aqi_data else None
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
def create_cesium_component():
|
| 116 |
+
"""Create Cesium 3D map component"""
|
| 117 |
+
cesium_html = """
|
| 118 |
+
<div id="cesiumContainer" style="width: 100%; height: 600px;"></div>
|
| 119 |
+
<script src="https://cesium.com/downloads/cesiumjs/releases/1.95/Build/Cesium/Cesium.js"></script>
|
| 120 |
+
<link href="https://cesium.com/downloads/cesiumjs/releases/1.95/Build/Cesium/Widgets/widgets.css" rel="stylesheet">
|
| 121 |
+
<script>
|
| 122 |
+
Cesium.Ion.defaultAccessToken = 'your-access-token';
|
| 123 |
+
const viewer = new Cesium.Viewer('cesiumContainer', {
|
| 124 |
+
terrainProvider: Cesium.createWorldTerrain()
|
| 125 |
+
});
|
| 126 |
+
viewer.camera.flyTo({
|
| 127 |
+
destination: Cesium.Cartesian3.fromDegrees(69.3451, 30.3753, 1000000.0)
|
| 128 |
+
});
|
| 129 |
+
</script>
|
| 130 |
+
"""
|
| 131 |
+
components.html(cesium_html, height=600)
|
| 132 |
+
|
| 133 |
+
def download_csv(df, filename):
|
| 134 |
+
"""Generate download link for CSV file"""
|
| 135 |
+
csv = df.to_csv(index=False)
|
| 136 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
| 137 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download {filename} Data</a>'
|
| 138 |
+
return href
|
| 139 |
+
|
| 140 |
+
def show_weather_analysis(data_collector):
|
| 141 |
+
st.header("Weather Analysis")
|
| 142 |
|
|
|
|
| 143 |
weather_data = data_collector.fetch_weather_data()
|
| 144 |
+
if weather_data:
|
| 145 |
+
selected_city = st.selectbox(
|
| 146 |
+
"Select City",
|
| 147 |
+
options=[data['city'] for data in weather_data]
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
city_data = next(data for data in weather_data if data['city'] == selected_city)
|
| 151 |
+
|
| 152 |
+
# Add download button for data
|
| 153 |
+
st.markdown(download_csv(city_data['hourly'], f"{selected_city}_weather_data"), unsafe_allow_html=True)
|
| 154 |
+
|
| 155 |
+
tabs = st.tabs(["Temperature", "Precipitation", "Wind", "Humidity"])
|
| 156 |
+
|
| 157 |
+
with tabs[0]:
|
| 158 |
+
fig = px.line(city_data['hourly'],
|
| 159 |
+
x='datetime',
|
| 160 |
+
y='temperature',
|
| 161 |
+
title=f'Temperature Trend - {selected_city}')
|
| 162 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 163 |
+
|
| 164 |
+
with tabs[1]:
|
| 165 |
+
fig = px.bar(city_data['daily'],
|
| 166 |
+
x='date',
|
| 167 |
+
y='precipitation_sum',
|
| 168 |
title=f'Daily Precipitation - {selected_city}')
|
| 169 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 170 |
+
|
| 171 |
+
with tabs[2]:
|
| 172 |
+
fig = px.line(city_data['hourly'],
|
| 173 |
+
x='datetime',
|
| 174 |
+
y='wind_speed',
|
| 175 |
+
title=f'Wind Speed - {selected_city}')
|
| 176 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 177 |
+
|
| 178 |
+
with tabs[3]:
|
| 179 |
+
fig = px.line(city_data['hourly'],
|
| 180 |
+
x='datetime',
|
| 181 |
+
y='humidity',
|
| 182 |
+
title=f'Humidity - {selected_city}')
|
| 183 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 184 |
+
|
| 185 |
+
def show_disaster_monitor(data_collector):
|
| 186 |
+
st.header("Disaster Monitoring")
|
| 187 |
+
|
| 188 |
+
earthquake_data = data_collector.fetch_usgs_earthquake_data()
|
| 189 |
+
|
| 190 |
+
if earthquake_data:
|
| 191 |
+
# 3D visualization using Cesium
|
| 192 |
+
st.subheader("3D Terrain View")
|
| 193 |
+
create_cesium_component()
|
| 194 |
+
|
| 195 |
+
# Traditional map
|
| 196 |
+
st.subheader("Recent Earthquakes Map")
|
| 197 |
+
m = folium.Map(location=[30.3753, 69.3451], zoom_start=5)
|
| 198 |
+
|
| 199 |
+
for eq in earthquake_data['features']:
|
| 200 |
+
coords = eq['geometry']['coordinates']
|
| 201 |
+
mag = eq['properties']['mag']
|
| 202 |
+
time = datetime.fromtimestamp(eq['properties']['time']/1000)
|
| 203 |
+
|
| 204 |
+
folium.CircleMarker(
|
| 205 |
+
location=[coords[1], coords[0]],
|
| 206 |
+
radius=mag * 3,
|
| 207 |
+
color='red',
|
| 208 |
+
fill=True,
|
| 209 |
+
popup=f"Magnitude: {mag}<br>Time: {time}",
|
| 210 |
+
).add_to(m)
|
| 211 |
+
|
| 212 |
+
folium_static(m)
|
| 213 |
+
|
| 214 |
+
# Earthquake data table
|
| 215 |
+
st.subheader("Recent Earthquakes")
|
| 216 |
+
eq_df = pd.DataFrame([
|
| 217 |
+
{
|
| 218 |
+
'Time': datetime.fromtimestamp(eq['properties']['time']/1000),
|
| 219 |
+
'Magnitude': eq['properties']['mag'],
|
| 220 |
+
'Location': eq['properties']['place'],
|
| 221 |
+
'Depth': eq['geometry']['coordinates'][2]
|
| 222 |
+
}
|
| 223 |
+
for eq in earthquake_data['features']
|
| 224 |
+
])
|
| 225 |
+
st.dataframe(eq_df)
|
| 226 |
+
st.markdown(download_csv(eq_df, "earthquake_data"), unsafe_allow_html=True)
|
| 227 |
|
| 228 |
+
def show_environmental_data(data_collector):
|
| 229 |
st.header("Environmental Data")
|
| 230 |
|
|
|
|
| 231 |
aqi_data = data_collector.fetch_air_quality_data()
|
| 232 |
|
| 233 |
if aqi_data is not None:
|
| 234 |
+
selected_city = st.selectbox("Select City", aqi_data['city'].unique())
|
| 235 |
+
city_data = aqi_data[aqi_data['city'] == selected_city].copy()
|
| 236 |
+
|
| 237 |
+
# Add download button
|
| 238 |
+
st.markdown(download_csv(city_data, f"{selected_city}_air_quality_data"), unsafe_allow_html=True)
|
| 239 |
+
|
| 240 |
+
# Air Quality Index calculation
|
| 241 |
+
city_data['AQI'] = (
|
| 242 |
+
city_data['PM2.5'] * 0.3 +
|
| 243 |
+
city_data['PM10'] * 0.2 +
|
| 244 |
+
city_data['NO2'] * 0.2 +
|
| 245 |
+
city_data['O3'] * 0.2 +
|
| 246 |
+
city_data['CO'] * 0.1
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
tabs = st.tabs(["Overall AQI", "Pollutants", "Trends"])
|
| 250 |
+
|
| 251 |
+
with tabs[0]:
|
| 252 |
+
current_aqi = city_data['AQI'].iloc[-1]
|
| 253 |
+
st.metric(
|
| 254 |
+
"Current Air Quality Index",
|
| 255 |
+
f"{current_aqi:.1f}",
|
| 256 |
+
delta=f"{current_aqi - city_data['AQI'].iloc[-2]:.1f}"
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
fig = px.line(city_data, x='datetime', y='AQI',
|
| 260 |
+
title=f'Air Quality Index - {selected_city}')
|
| 261 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 262 |
+
|
| 263 |
+
with tabs[1]:
|
| 264 |
+
pollutants = ['PM2.5', 'PM10', 'CO', 'NO2', 'O3']
|
| 265 |
+
selected_pollutant = st.selectbox("Select Pollutant", pollutants)
|
| 266 |
+
|
| 267 |
+
fig = px.line(city_data, x='datetime', y=selected_pollutant,
|
| 268 |
+
title=f'{selected_pollutant} Levels - {selected_city}')
|
| 269 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 270 |
+
|
| 271 |
+
with tabs[2]:
|
| 272 |
+
# 24-hour moving average
|
| 273 |
+
city_data['AQI_MA'] = city_data['AQI'].rolling(24).mean()
|
| 274 |
+
|
| 275 |
+
fig = go.Figure()
|
| 276 |
+
fig.add_trace(go.Scatter(x=city_data['datetime'], y=city_data['AQI'],
|
| 277 |
+
name='Raw AQI'))
|
| 278 |
+
fig.add_trace(go.Scatter(x=city_data['datetime'], y=city_data['AQI_MA'],
|
| 279 |
+
name='24-hour Moving Average'))
|
| 280 |
+
fig.update_layout(title=f'AQI Trends - {selected_city}')
|
| 281 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 282 |
|
| 283 |
+
def main():
|
| 284 |
+
st.title("Pakistan Climate & Disaster Monitoring System")
|
| 285 |
+
|
| 286 |
+
data_collector = DataCollector()
|
| 287 |
+
|
| 288 |
+
# Sidebar navigation
|
| 289 |
+
page = st.sidebar.selectbox(
|
| 290 |
+
"Select Module",
|
| 291 |
+
["Weather Analysis", "Disaster Monitor", "Environmental Data"]
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
if page == "Weather Analysis":
|
| 295 |
+
show_weather_analysis(data_collector)
|
| 296 |
+
elif page == "Disaster Monitor":
|
| 297 |
+
show_disaster_monitor(data_collector)
|
| 298 |
+
elif page == "Environmental Data":
|
| 299 |
+
show_environmental_data(data_collector)
|
| 300 |
|
| 301 |
if __name__ == "__main__":
|
| 302 |
+
main()
|