Spaces:
Sleeping
Sleeping
| # from transformers import pipeline | |
| # import gradio as gr | |
| # from PIL import Image | |
| # # Initialize the image classification pipeline with the specific model | |
| # pipe = pipeline("image-classification", model="prithivMLmods/Age-Classification-SigLIP2") | |
| # # Prediction function | |
| # def predict(input_img): | |
| # # Get the predictions from the pipeline | |
| # predictions = pipe(input_img) | |
| # result = {p["label"]: p["score"] for p in predictions} | |
| # # Return the image and the top predictions as a string | |
| # top_labels = [f"{label}: {score:.2f}" for label, score in result.items()] | |
| # return input_img, "\n".join(top_labels) | |
| # # Create the Gradio interface | |
| # gradio_app = gr.Interface( | |
| # fn=predict, | |
| # inputs=gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"), | |
| # outputs=[ | |
| # gr.Image(label="Processed Image"), | |
| # gr.Textbox(label="Result", placeholder="Top predictions here") | |
| # ], | |
| # title="Age Classification", | |
| # description="Upload or capture an image to classify age using the SigLIP2 model." | |
| # ) | |
| # # Launch the app | |
| # gradio_app.launch() | |
| from transformers import pipeline | |
| import gradio as gr | |
| from PIL import Image | |
| # Load the pretrained model pipeline | |
| classifier = pipeline("image-classification", model="sherab65/age-classification") | |
| # Prediction function | |
| def predict(input_img): | |
| predictions = classifier(input_img) | |
| # Format predictions | |
| result = {p["label"]: p["score"] for p in predictions} | |
| top_labels = [f"{label}: {score:.2f}" for label, score in result.items()] | |
| return input_img, "\n".join(top_labels) | |
| # Create Gradio interface | |
| gradio_app = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(label="Select Image", sources=["upload", "webcam"], type="pil"), | |
| outputs=[ | |
| gr.Image(label="Uploaded Image"), | |
| gr.Textbox(label="Predicted Age Group(s)") | |
| ], | |
| title="Age Classification using Hugging Face Model", | |
| description="Upload or capture an image to classify the person's age group." | |
| ) | |
| # Launch the app | |
| gradio_app.launch() | |