File size: 7,941 Bytes
a274d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650b3a2
a274d42
 
 
 
 
 
 
650b3a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import math
from typing import Dict, Tuple
from huggingface_hub import hf_hub_download
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from tqdm import tqdm

def batchify(tensor: Tensor, T: int) -> Tensor:
    orig_size = tensor.size(-1)
    new_size = math.ceil(orig_size / T) * T
    tensor = F.pad(tensor, [0, new_size - orig_size])
    return torch.cat(torch.split(tensor, T, dim=-1), dim=0)


class EncoderBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int) -> None:
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=(2, 2))
        self.bn = nn.BatchNorm2d(
            num_features=out_channels,
            track_running_stats=True,
            eps=0.001,
            momentum=0.01,
        )
        self.relu = nn.LeakyReLU(negative_slope=0.2)

    def forward(self, input: Tensor) -> Tuple[Tensor, Tensor]:
        down = self.conv(F.pad(input, (1, 2, 1, 2), "constant", 0))
        return down, self.relu(self.bn(down))


class DecoderBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, dropout_prob: float = 0.0
    ) -> None:
        super().__init__()
        self.tconv = nn.ConvTranspose2d(
            in_channels, out_channels, kernel_size=5, stride=2
        )
        self.relu = nn.ReLU()
        self.bn = nn.BatchNorm2d(
            out_channels, track_running_stats=True, eps=1e-3, momentum=0.01
        )
        self.dropout = nn.Dropout(dropout_prob) if dropout_prob > 0 else nn.Identity()

    def forward(self, input: Tensor) -> Tensor:
        up = self.tconv(input)
        # reverse padding
        l, r, t, b = 1, 2, 1, 2
        up = up[:, :, l:-r, t:-b]
        return self.dropout(self.bn(self.relu(up)))


class UNet(nn.Module):
    def __init__(
        self,
        n_layers: int = 6,
        in_channels: int = 1,
    ) -> None:
        super().__init__()

        # DownSample layers
        down_set = [in_channels] + [2 ** (i + 4) for i in range(n_layers)]
        self.encoder_layers = nn.ModuleList(
            [
                EncoderBlock(in_channels=in_ch, out_channels=out_ch)
                for in_ch, out_ch in zip(down_set[:-1], down_set[1:])
            ]
        )

        # UpSample layers
        up_set = [1] + [2 ** (i + 4) for i in range(n_layers)]
        up_set.reverse()
        self.decoder_layers = nn.ModuleList(
            [
                DecoderBlock(
                    # doubled for concatenated inputs (skip connections)
                    in_channels=in_ch if i == 0 else in_ch * 2,
                    out_channels=out_ch,
                    # 50% dropout for first 3 layers
                    dropout_prob=0.5 if i < 3 else 0,
                )
                for i, (in_ch, out_ch) in enumerate(zip(up_set[:-1], up_set[1:]))
            ]
        )

        # reconstruct the final mask same as the original channels
        self.up_final = nn.Conv2d(1, in_channels, kernel_size=4, dilation=2, padding=3)
        self.sigmoid = nn.Sigmoid()

    def forward(self, input: Tensor) -> Tensor:
        encoder_outputs_pre_act = []
        x = input
        for down in self.encoder_layers:
            conv, x = down(x)
            encoder_outputs_pre_act.append(conv)

        for i, up in enumerate(self.decoder_layers):
            if i == 0:
                x = up(encoder_outputs_pre_act.pop())
            else:
                # merge skip connection
                x = up(torch.cat([encoder_outputs_pre_act.pop(), x], dim=1))

        mask = self.sigmoid(self.up_final(x))

        # --- Crop both mask and input to match in size ---
        min_f = min(mask.size(-2), input.size(-2))
        min_t = min(mask.size(-1), input.size(-1))
        mask = mask[..., :min_f, :min_t]
        input = input[..., :min_f, :min_t]
        # -------------------------------------------------

        return mask * input




class Splitter(nn.Module):

    def __init__(self, stem_num=2):
        super(Splitter, self).__init__()
        if stem_num == 2:
            stem_names = ["vocals","accompaniment"]
        if stem_num == 4:
            stem_names = ["vocals", "drums", "bass", "other"]
        if stem_num == 5:
            stem_names = ["vocals", "piano", "drums", "bass", "other"]
        # stft config
        self.F = 1024
        self.T = 512
        self.win_length = 4096
        self.hop_length = 1024
        self.win = nn.Parameter(torch.hann_window(self.win_length), requires_grad=False)
        self.stems = nn.ModuleDict({name: UNet(in_channels=2) for name in stem_names})
        self.load_state_dict(torch.load(hf_hub_download("shethjenil/spleeter-torch",f"{stem_num}.pt")))
        self.eval()

    def compute_stft(self, wav: Tensor) -> Tuple[Tensor, Tensor]:
        """
        Computes STFT feature from wav
        Args:
            wav (Tensor): B x L or 2 x L for stereo
        Returns:
            stft (Tensor): B x F x T x 2 (real+imag)
            mag (Tensor): B x F x T magnitude
        """
        stft = torch.stft(
            wav,
            n_fft=self.win_length,
            hop_length=self.hop_length,
            window=self.win,
            center=True,
            return_complex=False,  # keep old format
            pad_mode="constant",
        )

        # Keep only first F frequency bins
        stft = stft[:, :self.F, :, :]

        # magnitude
        real = stft[:, :, :, 0]
        imag = stft[:, :, :, 1]
        mag = torch.sqrt(real**2 + imag**2 + 1e-10)

        return stft, mag

    def inverse_stft(self, stft: Tensor) -> Tensor:
        """Inverse STFT from real+imag tensor (B x F x T x 2)"""

        # Ensure frequency dimension matches n_fft / 2 + 1
        target_F = self.win_length // 2 + 1
        if stft.size(1) < target_F:
            pad = target_F - stft.size(1)
            stft = F.pad(stft, (0, 0, 0, 0, 0, pad))  # pad along freq dim

        # Convert real+imag to complex for istft
        stft_complex = torch.view_as_complex(stft)

        wav = torch.istft(
            stft_complex,
            n_fft=self.win_length,
            hop_length=self.hop_length,
            win_length=self.win_length,
            center=True,
            window=self.win,
        )

        return wav.detach()

    def forward(self, wav: Tensor,batch_size=16) -> Dict[str, Tensor]:
        # stft - 2 X F x L x 2
        # stft_mag - 2 X F x L
        stft, stft_mag = self.compute_stft(wav.squeeze())
        L = stft.size(2)
        # 1 x 2 x F x T
        stft_mag = stft_mag.unsqueeze(-1).permute([3, 0, 1, 2])
        stft_mag = batchify(stft_mag, self.T)  # B x 2 x F x T
        stft_mag = stft_mag.transpose(2, 3)  # B x 2 x T x F
        # compute stems' mask
        masks = self.infer_with_batches(stft_mag,batch_size)
        # compute denominator
        mask_sum = sum([m**2 for m in masks.values()])
        mask_sum += 1e-10
        def apply_mask(mask):
            mask = (mask**2 + 1e-10 / 2) / (mask_sum)
            mask = mask.transpose(2, 3)  # B x 2 X F x T
            mask = torch.cat(torch.split(mask, 1, dim=0), dim=3)
            mask = mask.squeeze(0)[:, :, :L].unsqueeze(-1)  # 2 x F x L x 1
            stft_masked = stft * mask
            return stft_masked
        return {name: self.inverse_stft(apply_mask(m)) for name, m in masks.items()}

    def infer_with_batches(self, stft_mag, batch_size):
        masks = {name: [] for name in self.stems.keys()}
        with torch.inference_mode():
            for i in tqdm(range(0, stft_mag.shape[0], batch_size)):
                batch = stft_mag[i:i + batch_size]
                batch_outputs = {name: net(batch) for name, net in self.stems.items()}
                for name in self.stems.keys():
                    masks[name].append(batch_outputs[name])
        masks = {name: torch.cat(masks[name], dim=0) for name in masks}
        return masks