File size: 61,144 Bytes
fa3056f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
import gradio as gr
import pandas as pd
import torch
from torch import nn
from transformers import (
    BertTokenizer,
    BertForSequenceClassification,
    TrainingArguments,
    Trainer
)
from datasets import Dataset
from sklearn.metrics import (
    accuracy_score,
    precision_recall_fscore_support,
    roc_auc_score,
    confusion_matrix
)
import numpy as np
from datetime import datetime
import json
import os
import gc

# PEFT 相關的 import(LoRA 和 AdaLoRA)
try:
    from peft import (
        LoraConfig,
        AdaLoraConfig,
        get_peft_model,
        TaskType,
        PeftModel
    )
    PEFT_AVAILABLE = True
except ImportError:
    PEFT_AVAILABLE = False
    print("⚠️ PEFT 未安裝,LoRA 和 AdaLoRA 功能將不可用")

# 檢查 GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

_MODEL_PATH = None
LAST_TOKENIZER = None
LAST_TUNING_METHOD = None

# ==================== 您的原始函數 - 完全不動 ====================

def evaluate_baseline_bert(eval_dataset, df_clean):
    """
    評估原始 BERT(完全沒看過資料)的表現
    這部分是從您的格子 5 提取的 baseline 比較邏輯
    """
    print("\n" + "=" * 80)
    print("評估 Baseline 純 BERT(完全沒看過資料)")
    print("=" * 80)
    
    # 載入純 BERT
    baseline_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    baseline_model = BertForSequenceClassification.from_pretrained(
        "bert-base-uncased",
        num_labels=2
    ).to(device)
    baseline_model.eval()
    
    print("   ⚠️ 這個模型完全沒有使用您的資料訓練")
    
    # 重新處理驗證集
    baseline_dataset = Dataset.from_pandas(df_clean[['text', 'label']])
    
    def baseline_preprocess(examples):
        return baseline_tokenizer(examples['text'], truncation=True, padding='max_length', max_length=256)
    
    baseline_tokenized = baseline_dataset.map(baseline_preprocess, batched=True)
    baseline_split = baseline_tokenized.train_test_split(test_size=0.2, seed=42)
    baseline_eval_dataset = baseline_split['test']
    
    # 建立 Baseline Trainer
    baseline_trainer_args = TrainingArguments(
        output_dir='./temp_baseline',
        per_device_eval_batch_size=32,
        report_to="none"
    )
    
    baseline_trainer = Trainer(
        model=baseline_model,
        args=baseline_trainer_args,
    )
    
    # 評估 Baseline
    print("📄 評估純 BERT...")
    predictions_output = baseline_trainer.predict(baseline_eval_dataset)
    
    all_preds = predictions_output.predictions.argmax(-1)
    all_labels = predictions_output.label_ids
    probs = torch.nn.functional.softmax(torch.tensor(predictions_output.predictions), dim=-1)[:, 1].numpy()
    
    # 計算指標
    precision, recall, f1, _ = precision_recall_fscore_support(
        all_labels, all_preds, average='binary', pos_label=1, zero_division=0
    )
    acc = accuracy_score(all_labels, all_preds)
    
    try:
        auc = roc_auc_score(all_labels, probs)
    except:
        auc = 0.0
    
    cm = confusion_matrix(all_labels, all_preds)
    if cm.shape == (2, 2):
        tn, fp, fn, tp = cm.ravel()
        sensitivity = tp / (tp + fn) if (tp + fn) > 0 else 0
        specificity = tn / (tn + fp) if (tn + fp) > 0 else 0
    else:
        sensitivity = specificity = 0
        tn = fp = fn = tp = 0
    
    baseline_results = {
        'f1': float(f1),
        'accuracy': float(acc),
        'precision': float(precision),
        'recall': float(recall),
        'sensitivity': float(sensitivity),
        'specificity': float(specificity),
        'auc': float(auc),
        'tp': int(tp),
        'tn': int(tn),
        'fp': int(fp),
        'fn': int(fn)
    }
    
    print("✅ Baseline 評估完成")
    
    # 清理
    del baseline_model
    del baseline_trainer
    torch.cuda.empty_cache()
    gc.collect()
    
    return baseline_results

def run_original_code_with_tuning(
    file_path, 
    weight_multiplier, 
    epochs, 
    batch_size, 
    learning_rate, 
    warmup_steps,
    tuning_method,
    best_metric,
    # LoRA 參數
    lora_r,
    lora_alpha,
    lora_dropout,
    lora_modules,
    # AdaLoRA 參數
    adalora_init_r,
    adalora_target_r,
    adalora_tinit,
    adalora_tfinal,
    adalora_delta_t,
    # 新增:是否為二次微調
    is_second_finetuning=False,
    base_model_path=None
):
    """
    您的原始程式碼 + 不同微調方法的選項 + Baseline 比較
    核心邏輯完全不變,只是在模型初始化部分加入條件判斷
    
    新增參數:
    - is_second_finetuning: 是否為二次微調
    - base_model_path: 第一次微調模型的路徑(僅二次微調時使用)
    """
    
    global LAST_MODEL_PATH, LAST_TOKENIZER, LAST_TUNING_METHOD
    
    # ==================== 清空記憶體(訓練前) ====================
    torch.cuda.empty_cache()
    gc.collect()
    print("🧹 記憶體已清空")
    
    # ==================== 您的原始程式碼開始 ====================
    
    # 讀取上傳的檔案
    df_original = pd.read_csv(file_path)
    df_clean = pd.DataFrame({
        'text': df_original['Text'],
        'label': df_original['label']
    })
    df_clean = df_clean.dropna()
    
    training_type = "二次微調" if is_second_finetuning else "第一次微調"
    
    print("\n" + "=" * 80)
    print(f"乳癌存活預測 BERT {training_type} - {tuning_method} 方法")
    print("=" * 80)
    print(f"開始時間: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
    print(f"訓練類型: {training_type}")
    print(f"微調方法: {tuning_method}")
    print(f"最佳化指標: {best_metric}")
    if is_second_finetuning:
        print(f"基礎模型: {base_model_path}")
    print("=" * 80)
    
    # 載入 Tokenizer
    print("\n📦 載入 BERT Tokenizer...")
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    print("✅ Tokenizer 載入完成")
    
    # 評估函數 - 完全是您的原始程式碼,不動
    def compute_metrics(pred):
        labels = pred.label_ids
        preds = pred.predictions.argmax(-1)
        probs = torch.nn.functional.softmax(torch.tensor(pred.predictions), dim=-1)[:, 1].numpy()

        precision, recall, f1, _ = precision_recall_fscore_support(
            labels, preds, average='binary', pos_label=1, zero_division=0
        )
        acc = accuracy_score(labels, preds)

        try:
            auc = roc_auc_score(labels, probs)
        except:
            auc = 0.0

        cm = confusion_matrix(labels, preds)
        if cm.shape == (2, 2):
            tn, fp, fn, tp = cm.ravel()
        else:
            if len(np.unique(preds)) == 1:
                if preds[0] == 0:
                    tn, fp, fn, tp = sum(labels == 0), 0, sum(labels == 1), 0
                else:
                    tn, fp, fn, tp = 0, sum(labels == 0), 0, sum(labels == 1)
            else:
                tn = fp = fn = tp = 0

        sensitivity = tp / (tp + fn) if (tp + fn) > 0 else 0
        specificity = tn / (tn + fp) if (tn + fp) > 0 else 0

        return {
            'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall,
            'auc': auc, 'sensitivity': sensitivity, 'specificity': specificity,
            'tp': int(tp), 'tn': int(tn), 'fp': int(fp), 'fn': int(fn)
        }
    
    # ============================================================================
    # 步驟 1:準備資料(不做平衡) - 您的原始程式碼
    # ============================================================================
    
    print("\n" + "=" * 80)
    print("步驟 1:準備資料(保持原始比例)")
    print("=" * 80)
    
    print(f"\n原始資料分布:")
    print(f"  存活 (0): {sum(df_clean['label']==0)} 筆 ({sum(df_clean['label']==0)/len(df_clean)*100:.1f}%)")
    print(f"  死亡 (1): {sum(df_clean['label']==1)} 筆 ({sum(df_clean['label']==1)/len(df_clean)*100:.1f}%)")
    
    ratio = sum(df_clean['label']==0) / sum(df_clean['label']==1)
    print(f"  不平衡比例: {ratio:.1f}:1")
    
    # ============================================================================
    # 步驟 2:Tokenization - 您的原始程式碼
    # ============================================================================
    
    print("\n" + "=" * 80)
    print("步驟 2:Tokenization")
    print("=" * 80)
    
    dataset = Dataset.from_pandas(df_clean[['text', 'label']])
    
    def preprocess_function(examples):
        return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=256)
    
    tokenized_dataset = dataset.map(preprocess_function, batched=True)
    train_test_split = tokenized_dataset.train_test_split(test_size=0.2, seed=42)
    train_dataset = train_test_split['train']
    eval_dataset = train_test_split['test']
    
    print(f"\n✅ 資料集準備完成:")
    print(f"  訓練集: {len(train_dataset)} 筆")
    print(f"  驗證集: {len(eval_dataset)} 筆")
    
    # ============================================================================
    # 步驟 3:設定權重 - 您的原始程式碼
    # ============================================================================
    
    print("\n" + "=" * 80)
    print(f"步驟 3:設定類別權重({weight_multiplier}x 倍數)")
    print("=" * 80)
    
    weight_0 = 1.0
    weight_1 = ratio * weight_multiplier
    
    print(f"\n權重設定:")
    print(f"  倍數: {weight_multiplier}x")
    print(f"  存活類權重: {weight_0:.3f}")
    print(f"  死亡類權重: {weight_1:.3f} (= {ratio:.1f} × {weight_multiplier})")
    
    class_weights = torch.tensor([weight_0, weight_1], dtype=torch.float).to(device)
    
    # ============================================================================
    # 步驟 4:訓練模型 - 這裡加入二次微調的邏輯
    # ============================================================================
    
    print("\n" + "=" * 80)
    print(f"步驟 4:訓練 {tuning_method} BERT 模型 ({training_type})")
    print("=" * 80)
    
    print(f"\n🔄 初始化模型 ({tuning_method})...")
    
    # 【新增】二次微調:載入第一次微調的模型
    if is_second_finetuning and base_model_path:
        print(f"📦 載入第一次微調模型: {base_model_path}")
        
        # 讀取第一次模型資訊
        with open('./saved_models_list.json', 'r') as f:
            models_list = json.load(f)
        
        base_model_info = None
        for model_info in models_list:
            if model_info['model_path'] == base_model_path:
                base_model_info = model_info
                break
        
        if base_model_info is None:
            raise ValueError(f"找不到基礎模型資訊: {base_model_path}")
        
        base_tuning_method = base_model_info['tuning_method']
        print(f"   第一次微調方法: {base_tuning_method}")
        
        # 根據第一次的方法載入模型
        if base_tuning_method in ["LoRA", "AdaLoRA"] and PEFT_AVAILABLE:
            # 載入 PEFT 模型
            base_bert = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
            model = PeftModel.from_pretrained(base_bert, base_model_path)
            print(f"   ✅ 已載入 {base_tuning_method} 模型")
        else:
            # 載入一般模型
            model = BertForSequenceClassification.from_pretrained(base_model_path, num_labels=2)
            print(f"   ✅ 已載入 Full Fine-tuning 模型")
        
        model = model.to(device)
        print(f"   ⚠️ 注意:二次微調將使用與第一次相同的方法 ({base_tuning_method})")
        
        # 二次微調時強制使用相同方法
        tuning_method = base_tuning_method
        
    else:
        # 【原始邏輯】第一次微調:從純 BERT 開始
        model = BertForSequenceClassification.from_pretrained(
            "bert-base-uncased", num_labels=2, problem_type="single_label_classification"
        )
        
        # 根據選擇的微調方法設定模型
        if tuning_method == "Full Fine-tuning":
            # 您的原始方法 - 完全不動
            model = model.to(device)
            print("✅ 使用完整 Fine-tuning(所有參數可訓練)")
            trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
            all_params = sum(p.numel() for p in model.parameters())
            print(f"  可訓練參數: {trainable_params:,} / {all_params:,} ({100 * trainable_params / all_params:.2f}%)")
            
        elif tuning_method == "LoRA" and PEFT_AVAILABLE:
            # LoRA 設定
            target_modules = lora_modules.split(",") if lora_modules else ["query", "value"]
            target_modules = [m.strip() for m in target_modules]
            
            peft_config = LoraConfig(
                task_type=TaskType.SEQ_CLS,
                r=int(lora_r),
                lora_alpha=int(lora_alpha),
                lora_dropout=float(lora_dropout),
                target_modules=target_modules
            )
            model = get_peft_model(model, peft_config)
            model = model.to(device)
            print("✅ 使用 LoRA 微調")
            print(f"  LoRA rank (r): {lora_r}")
            print(f"  LoRA alpha: {lora_alpha}")
            print(f"  LoRA dropout: {lora_dropout}")
            print(f"  目標模組: {target_modules}")
            model.print_trainable_parameters()
            
        elif tuning_method == "AdaLoRA" and PEFT_AVAILABLE:
            # AdaLoRA 設定
            target_modules = lora_modules.split(",") if lora_modules else ["query", "value"]
            target_modules = [m.strip() for m in target_modules]
            
            peft_config = AdaLoraConfig(
                task_type=TaskType.SEQ_CLS,
                init_r=int(adalora_init_r),
                target_r=int(adalora_target_r),
                tinit=int(adalora_tinit),
                tfinal=int(adalora_tfinal),
                deltaT=int(adalora_delta_t),
                lora_alpha=int(lora_alpha),
                lora_dropout=float(lora_dropout),
                target_modules=target_modules
            )
            model = get_peft_model(model, peft_config)
            model = model.to(device)
            print("✅ 使用 AdaLoRA 微調")
            print(f"  初始 rank: {adalora_init_r}")
            print(f"  目標 rank: {adalora_target_r}")
            print(f"  Tinit: {adalora_tinit}, Tfinal: {adalora_tfinal}, DeltaT: {adalora_delta_t}")
            model.print_trainable_parameters()
            
        else:
            # 預設使用 Full Fine-tuning
            model = model.to(device)
            print("⚠️ PEFT 未安裝或方法無效,使用 Full Fine-tuning")
    
    # 自訂 Trainer(使用權重) - 您的原始程式碼
    class WeightedTrainer(Trainer):
        def compute_loss(self, model, inputs, return_outputs=False):
            labels = inputs.pop("labels")
            outputs = model(**inputs)
            loss_fct = nn.CrossEntropyLoss(weight=class_weights)
            loss = loss_fct(outputs.logits.view(-1, 2), labels.view(-1))
            return (loss, outputs) if return_outputs else loss
    
    # 訓練設定 - 根據選擇的最佳指標調整
    metric_map = {
        "f1": "f1",
        "accuracy": "accuracy",
        "precision": "precision",
        "recall": "recall",
        "sensitivity": "sensitivity",
        "specificity": "specificity",
        "auc": "auc"
    }
    
    training_args = TrainingArguments(
        output_dir='./results_weight',
        num_train_epochs=epochs,
        per_device_train_batch_size=batch_size,
        per_device_eval_batch_size=batch_size*2,
        warmup_steps=warmup_steps,
        weight_decay=0.01,
        learning_rate=learning_rate,
        logging_steps=50,
        evaluation_strategy="epoch",
        save_strategy="epoch",
        load_best_model_at_end=True,
        metric_for_best_model=metric_map.get(best_metric, "f1"),
        report_to="none",
        greater_is_better=True
    )
    
    trainer = WeightedTrainer(
        model=model, args=training_args,
        train_dataset=train_dataset, eval_dataset=eval_dataset,
        compute_metrics=compute_metrics
    )
    
    print(f"\n🚀 開始訓練({epochs} epochs)...")
    print(f"   最佳化指標: {best_metric}")
    print("-" * 80)
    
    trainer.train()
    
    print("\n✅ 模型訓練完成!")
    
    # 評估模型
    print("\n📊 評估模型...")
    results = trainer.evaluate()
    
    print(f"\n{training_type} {tuning_method} BERT ({weight_multiplier}x 權重) 表現:")
    print(f"  F1 Score: {results['eval_f1']:.4f}")
    print(f"  Accuracy: {results['eval_accuracy']:.4f}")
    print(f"  Precision: {results['eval_precision']:.4f}")
    print(f"  Recall: {results['eval_recall']:.4f}")
    print(f"  Sensitivity: {results['eval_sensitivity']:.4f}")
    print(f"  Specificity: {results['eval_specificity']:.4f}")
    print(f"  AUC: {results['eval_auc']:.4f}")
    print(f"  混淆矩陣: Tp={results['eval_tp']}, Tn={results['eval_tn']}, "
          f"Fp={results['eval_fp']}, Fn={results['eval_fn']}")
    
    # ============================================================================
    # 步驟 5:Baseline 比較(純 BERT) - 僅第一次微調時執行
    # ============================================================================
    
    if not is_second_finetuning:
        print("\n" + "=" * 80)
        print("步驟 5:Baseline 比較 - 純 BERT(完全沒看過資料)")
        print("=" * 80)
        
        baseline_results = evaluate_baseline_bert(eval_dataset, df_clean)
        
        # ============================================================================
        # 步驟 6:比較結果
        # ============================================================================
        
        print("\n" + "=" * 80)
        print(f"📊 【對比結果】純 BERT vs {tuning_method} BERT")
        print("=" * 80)
        
        print("\n📋 詳細比較表:")
        print("-" * 100)
        print(f"{'指標':<15} {'純 BERT':<20} {tuning_method:<20} {'改善幅度':<20}")
        print("-" * 100)
        
        metrics_to_compare = [
            ('F1 Score', 'f1', 'eval_f1'),
            ('Accuracy', 'accuracy', 'eval_accuracy'),
            ('Precision', 'precision', 'eval_precision'),
            ('Recall', 'recall', 'eval_recall'),
            ('Sensitivity', 'sensitivity', 'eval_sensitivity'),
            ('Specificity', 'specificity', 'eval_specificity'),
            ('AUC', 'auc', 'eval_auc')
        ]
        
        for name, baseline_key, finetuned_key in metrics_to_compare:
            baseline_val = baseline_results[baseline_key]
            finetuned_val = results[finetuned_key]
            improvement = ((finetuned_val - baseline_val) / baseline_val * 100) if baseline_val > 0 else 0
            
            print(f"{name:<15} {baseline_val:<20.4f} {finetuned_val:<20.4f} {improvement:>+18.1f}%")
        
        print("-" * 100)
    else:
        baseline_results = None
    
    # 儲存模型
    training_label = "second" if is_second_finetuning else "first"
    save_dir = f'./breast_cancer_bert_{tuning_method.lower().replace(" ", "_")}_{training_label}_{datetime.now().strftime("%Y%m%d_%H%M%S")}'
    
    if tuning_method in ["LoRA", "AdaLoRA"] and PEFT_AVAILABLE:
        # PEFT 模型儲存方式
        model.save_pretrained(save_dir)
        tokenizer.save_pretrained(save_dir)
    else:
        # 一般模型儲存方式
        model.save_pretrained(save_dir)
        tokenizer.save_pretrained(save_dir)
    
    # 儲存模型資訊到 JSON 檔案(用於預測頁面選擇)
    model_info = {
        'model_path': save_dir,
        'tuning_method': tuning_method,
        'training_type': training_type,
        'best_metric': best_metric,
        'best_metric_value': float(results[f'eval_{metric_map.get(best_metric, "f1")}']),
        'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
        'weight_multiplier': weight_multiplier,
        'epochs': epochs,
        'is_second_finetuning': is_second_finetuning,
        'base_model_path': base_model_path if is_second_finetuning else None
    }
    
    # 讀取現有的模型列表
    models_list_file = './saved_models_list.json'
    if os.path.exists(models_list_file):
        with open(models_list_file, 'r') as f:
            models_list = json.load(f)
    else:
        models_list = []
    
    # 加入新模型資訊
    models_list.append(model_info)
    
    # 儲存更新後的列表
    with open(models_list_file, 'w') as f:
        json.dump(models_list, f, indent=2)
    
    # 儲存到全域變數供預測使用
    LAST_MODEL_PATH = save_dir
    LAST_TOKENIZER = tokenizer
    LAST_TUNING_METHOD = tuning_method
    
    print(f"\n💾 模型已儲存至: {save_dir}")
    print("\n" + "=" * 80)
    print("🎉 訓練完成!")
    print("=" * 80)
    print(f"完成時間: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
    
    # ==================== 清空記憶體(訓練後) ====================
    del model
    del trainer
    torch.cuda.empty_cache()
    gc.collect()
    print("🧹 訓練後記憶體已清空")
    
    # 加入所有資訊到結果中
    results['tuning_method'] = tuning_method
    results['training_type'] = training_type
    results['best_metric'] = best_metric
    results['best_metric_value'] = results[f'eval_{metric_map.get(best_metric, "f1")}']
    results['baseline_results'] = baseline_results
    results['model_path'] = save_dir
    results['is_second_finetuning'] = is_second_finetuning
    
    return results

# ==================== 新增:新數據測試函數 ====================

def test_on_new_data(test_file_path, baseline_model_path, first_model_path, second_model_path):
    """
    在新測試數據上比較三個模型的表現:
    1. 純 BERT (baseline)
    2. 第一次微調模型
    3. 第二次微調模型
    """
    
    print("\n" + "=" * 80)
    print("📊 新數據測試 - 三模型比較")
    print("=" * 80)
    
    # 載入測試數據
    df_test = pd.read_csv(test_file_path)
    df_clean = pd.DataFrame({
        'text': df_test['Text'],
        'label': df_test['label']
    })
    df_clean = df_clean.dropna()
    
    print(f"\n測試數據:")
    print(f"  總筆數: {len(df_clean)}")
    print(f"  存活 (0): {sum(df_clean['label']==0)} 筆")
    print(f"  死亡 (1): {sum(df_clean['label']==1)} 筆")
    
    # 準備測試數據
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    test_dataset = Dataset.from_pandas(df_clean[['text', 'label']])
    
    def preprocess_function(examples):
        return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=256)
    
    test_tokenized = test_dataset.map(preprocess_function, batched=True)
    
    # 評估函數
    def evaluate_model(model, dataset_name):
        model.eval()
        
        trainer_args = TrainingArguments(
            output_dir='./temp_test',
            per_device_eval_batch_size=32,
            report_to="none"
        )
        
        trainer = Trainer(
            model=model,
            args=trainer_args,
        )
        
        predictions_output = trainer.predict(test_tokenized)
        
        all_preds = predictions_output.predictions.argmax(-1)
        all_labels = predictions_output.label_ids
        probs = torch.nn.functional.softmax(torch.tensor(predictions_output.predictions), dim=-1)[:, 1].numpy()
        
        precision, recall, f1, _ = precision_recall_fscore_support(
            all_labels, all_preds, average='binary', pos_label=1, zero_division=0
        )
        acc = accuracy_score(all_labels, all_preds)
        
        try:
            auc = roc_auc_score(all_labels, probs)
        except:
            auc = 0.0
        
        cm = confusion_matrix(all_labels, all_preds)
        if cm.shape == (2, 2):
            tn, fp, fn, tp = cm.ravel()
            sensitivity = tp / (tp + fn) if (tp + fn) > 0 else 0
            specificity = tn / (tn + fp) if (tn + fp) > 0 else 0
        else:
            sensitivity = specificity = 0
            tn = fp = fn = tp = 0
        
        results = {
            'f1': float(f1),
            'accuracy': float(acc),
            'precision': float(precision),
            'recall': float(recall),
            'sensitivity': float(sensitivity),
            'specificity': float(specificity),
            'auc': float(auc),
            'tp': int(tp),
            'tn': int(tn),
            'fp': int(fp),
            'fn': int(fn)
        }
        
        print(f"\n✅ {dataset_name} 評估完成")
        
        del trainer
        torch.cuda.empty_cache()
        gc.collect()
        
        return results
    
    all_results = {}
    
    # 1. 評估純 BERT
    if baseline_model_path != "跳過":
        print("\n" + "-" * 80)
        print("1️⃣ 評估純 BERT (Baseline)")
        print("-" * 80)
        baseline_model = BertForSequenceClassification.from_pretrained(
            "bert-base-uncased",
            num_labels=2
        ).to(device)
        all_results['baseline'] = evaluate_model(baseline_model, "純 BERT")
        del baseline_model
        torch.cuda.empty_cache()
    else:
        all_results['baseline'] = None
    
    # 2. 評估第一次微調模型
    if first_model_path != "請選擇":
        print("\n" + "-" * 80)
        print("2️⃣ 評估第一次微調模型")
        print("-" * 80)
        
        # 讀取模型資訊
        with open('./saved_models_list.json', 'r') as f:
            models_list = json.load(f)
        
        first_model_info = None
        for model_info in models_list:
            if model_info['model_path'] == first_model_path:
                first_model_info = model_info
                break
        
        if first_model_info:
            tuning_method = first_model_info['tuning_method']
            
            if tuning_method in ["LoRA", "AdaLoRA"] and PEFT_AVAILABLE:
                base_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
                first_model = PeftModel.from_pretrained(base_model, first_model_path)
                first_model = first_model.to(device)
            else:
                first_model = BertForSequenceClassification.from_pretrained(first_model_path).to(device)
            
            all_results['first'] = evaluate_model(first_model, "第一次微調模型")
            del first_model
            torch.cuda.empty_cache()
        else:
            all_results['first'] = None
    else:
        all_results['first'] = None
    
    # 3. 評估第二次微調模型
    if second_model_path != "請選擇":
        print("\n" + "-" * 80)
        print("3️⃣ 評估第二次微調模型")
        print("-" * 80)
        
        # 讀取模型資訊
        with open('./saved_models_list.json', 'r') as f:
            models_list = json.load(f)
        
        second_model_info = None
        for model_info in models_list:
            if model_info['model_path'] == second_model_path:
                second_model_info = model_info
                break
        
        if second_model_info:
            tuning_method = second_model_info['tuning_method']
            
            if tuning_method in ["LoRA", "AdaLoRA"] and PEFT_AVAILABLE:
                base_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
                second_model = PeftModel.from_pretrained(base_model, second_model_path)
                second_model = second_model.to(device)
            else:
                second_model = BertForSequenceClassification.from_pretrained(second_model_path).to(device)
            
            all_results['second'] = evaluate_model(second_model, "第二次微調模型")
            del second_model
            torch.cuda.empty_cache()
        else:
            all_results['second'] = None
    else:
        all_results['second'] = None
    
    print("\n" + "=" * 80)
    print("✅ 新數據測試完成")
    print("=" * 80)
    
    return all_results

# ==================== 預測函數(保持原樣) ====================

def predict_text(model_choice, text_input):
    """
    預測功能 - 支持選擇已訓練的模型,並同時顯示未微調和微調的預測結果
    """
    
    if not text_input or text_input.strip() == "":
        return "請輸入文本", "請輸入文本"
    
    try:
        # ==================== 未微調的 BERT 預測 ====================
        print("\n使用未微調 BERT 預測...")
        baseline_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        baseline_model = BertForSequenceClassification.from_pretrained(
            "bert-base-uncased",
            num_labels=2
        ).to(device)
        baseline_model.eval()
        
        # Tokenize 輸入(未微調)
        baseline_inputs = baseline_tokenizer(
            text_input,
            truncation=True,
            padding='max_length',
            max_length=256,
            return_tensors='pt'
        ).to(device)
        
        # 預測(未微調)
        with torch.no_grad():
            baseline_outputs = baseline_model(**baseline_inputs)
            baseline_probs = torch.nn.functional.softmax(baseline_outputs.logits, dim=-1)
            baseline_pred_class = baseline_probs.argmax(-1).item()
            baseline_confidence = baseline_probs[0][baseline_pred_class].item()
        
        baseline_result = "存活" if baseline_pred_class == 0 else "死亡"
        baseline_prob_survive = baseline_probs[0][0].item()
        baseline_prob_death = baseline_probs[0][1].item()
        
        baseline_output = f"""
# 🔵 未微調 BERT 預測結果

## 預測類別: **{baseline_result}**

## 信心度: **{baseline_confidence:.1%}**

## 機率分布:
- 🟢 **存活機率**: {baseline_prob_survive:.2%}
- 🔴 **死亡機率**: {baseline_prob_death:.2%}

---
**說明**: 此為原始 BERT 模型,未經任何領域資料訓練
        """
        
        # 清空記憶體
        del baseline_model
        del baseline_tokenizer
        torch.cuda.empty_cache()
        
        # ==================== 微調後的 BERT 預測 ====================
        
        if model_choice == "請先訓練模型":
            finetuned_output = """
# 🟢 微調 BERT 預測結果

❌ 尚未訓練任何模型,請先在「模型訓練」頁面訓練模型
            """
            return baseline_output, finetuned_output
        
        # 解析選擇的模型路徑
        model_path = model_choice.split(" | ")[0].replace("路徑: ", "")
        
        # 從 JSON 讀取模型資訊
        with open('./saved_models_list.json', 'r') as f:
            models_list = json.load(f)
        
        selected_model_info = None
        for model_info in models_list:
            if model_info['model_path'] == model_path:
                selected_model_info = model_info
                break
        
        if selected_model_info is None:
            finetuned_output = f"""
# 🟢 微調 BERT 預測結果

❌ 找不到模型:{model_path}
            """
            return baseline_output, finetuned_output
        
        print(f"\n使用微調模型: {model_path}")
        
        # 載入 tokenizer
        finetuned_tokenizer = BertTokenizer.from_pretrained(model_path)
        
        # 載入模型
        tuning_method = selected_model_info['tuning_method']
        if tuning_method in ["LoRA", "AdaLoRA"] and PEFT_AVAILABLE:
            # 載入 PEFT 模型
            base_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
            finetuned_model = PeftModel.from_pretrained(base_model, model_path)
            finetuned_model = finetuned_model.to(device)
        else:
            # 載入一般模型
            finetuned_model = BertForSequenceClassification.from_pretrained(model_path).to(device)
        
        finetuned_model.eval()
        
        # Tokenize 輸入(微調)
        finetuned_inputs = finetuned_tokenizer(
            text_input,
            truncation=True,
            padding='max_length',
            max_length=256,
            return_tensors='pt'
        ).to(device)
        
        # 預測(微調)
        with torch.no_grad():
            finetuned_outputs = finetuned_model(**finetuned_inputs)
            finetuned_probs = torch.nn.functional.softmax(finetuned_outputs.logits, dim=-1)
            finetuned_pred_class = finetuned_probs.argmax(-1).item()
            finetuned_confidence = finetuned_probs[0][finetuned_pred_class].item()
        
        finetuned_result = "存活" if finetuned_pred_class == 0 else "死亡"
        finetuned_prob_survive = finetuned_probs[0][0].item()
        finetuned_prob_death = finetuned_probs[0][1].item()
        
        training_type_label = "二次微調" if selected_model_info.get('is_second_finetuning', False) else "第一次微調"
        
        finetuned_output = f"""
# 🟢 微調 BERT 預測結果

## 預測類別: **{finetuned_result}**

## 信心度: **{finetuned_confidence:.1%}**

## 機率分布:
- 🟢 **存活機率**: {finetuned_prob_survive:.2%}
- 🔴 **死亡機率**: {finetuned_prob_death:.2%}

---
### 模型資訊:
- **訓練類型**: {training_type_label}
- **微調方法**: {selected_model_info['tuning_method']}
- **最佳化指標**: {selected_model_info['best_metric']}
- **訓練時間**: {selected_model_info['timestamp']}
- **模型路徑**: {model_path}

---
**注意**: 此預測僅供參考,實際醫療決策應由專業醫師判斷。
        """
        
        # 清空記憶體
        del finetuned_model
        del finetuned_tokenizer
        torch.cuda.empty_cache()
        
        return baseline_output, finetuned_output
        
    except Exception as e:
        import traceback
        error_msg = f"❌ 預測錯誤:{str(e)}\n\n詳細錯誤訊息:\n{traceback.format_exc()}"
        return error_msg, error_msg

def get_available_models():
    """
    取得所有已訓練的模型列表
    """
    models_list_file = './saved_models_list.json'
    if not os.path.exists(models_list_file):
        return ["請先訓練模型"]
    
    with open(models_list_file, 'r') as f:
        models_list = json.load(f)
    
    if len(models_list) == 0:
        return ["請先訓練模型"]
    
    # 格式化模型選項
    model_choices = []
    for i, model_info in enumerate(models_list, 1):
        training_type = model_info.get('training_type', '第一次微調')
        choice = f"路徑: {model_info['model_path']} | 類型: {training_type} | 方法: {model_info['tuning_method']} | 時間: {model_info['timestamp']}"
        model_choices.append(choice)
    
    return model_choices

def get_first_finetuning_models():
    """
    取得所有第一次微調的模型(用於二次微調選擇)
    """
    models_list_file = './saved_models_list.json'
    if not os.path.exists(models_list_file):
        return ["請先進行第一次微調"]
    
    with open(models_list_file, 'r') as f:
        models_list = json.load(f)
    
    # 只返回第一次微調的模型
    first_models = [m for m in models_list if not m.get('is_second_finetuning', False)]
    
    if len(first_models) == 0:
        return ["請先進行第一次微調"]
    
    model_choices = []
    for model_info in first_models:
        choice = f"{model_info['model_path']}"
        model_choices.append(choice)
    
    return model_choices

# ==================== Wrapper 函數 ====================

def train_first_wrapper(
    file, tuning_method, weight_mult, epochs, batch_size, lr, warmup, best_metric,
    lora_r, lora_alpha, lora_dropout, lora_modules,
    adalora_init_r, adalora_target_r, adalora_tinit, adalora_tfinal, adalora_delta_t
):
    """第一次微調的包裝函數"""
    
    if file is None:
        return "請上傳 CSV 檔案", "", ""
    
    try:
        results = run_original_code_with_tuning(
            file_path=file.name,
            weight_multiplier=weight_mult,
            epochs=int(epochs),
            batch_size=int(batch_size),
            learning_rate=lr,
            warmup_steps=int(warmup),
            tuning_method=tuning_method,
            best_metric=best_metric,
            lora_r=lora_r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            lora_modules=lora_modules,
            adalora_init_r=adalora_init_r,
            adalora_target_r=adalora_target_r,
            adalora_tinit=adalora_tinit,
            adalora_tfinal=adalora_tfinal,
            adalora_delta_t=adalora_delta_t,
            is_second_finetuning=False
        )
        
        baseline_results = results['baseline_results']
        
        # 格式化輸出
        data_info = f"""
# 📊 資料資訊 (第一次微調)

## 🔧 訓練配置
- **微調方法**: {results['tuning_method']}
- **最佳化指標**: {results['best_metric']}
- **最佳指標值**: {results['best_metric_value']:.4f}

## ⚙️ 訓練參數
- **權重倍數**: {weight_mult}x
- **訓練輪數**: {epochs}
- **批次大小**: {batch_size}
- **學習率**: {lr}
- **Warmup Steps**: {warmup}

✅ 第一次微調完成!可進行二次微調或預測!
        """
        
        baseline_output = f"""
# 🔵 純 BERT (Baseline)

### 📈 評估指標

| 指標 | 數值 |
|------|------|
| **F1 Score** | {baseline_results['f1']:.4f} |
| **Accuracy** | {baseline_results['accuracy']:.4f} |
| **Precision** | {baseline_results['precision']:.4f} |
| **Recall** | {baseline_results['recall']:.4f} |
| **Sensitivity** | {baseline_results['sensitivity']:.4f} |
| **Specificity** | {baseline_results['specificity']:.4f} |
| **AUC** | {baseline_results['auc']:.4f} |

### 📈 混淆矩陣

|  | 預測:存活 | 預測:死亡 |
|---|-----------|-----------|
| **實際:存活** | TN={baseline_results['tn']} | FP={baseline_results['fp']} |
| **實際:死亡** | FN={baseline_results['fn']} | TP={baseline_results['tp']} |
        """
        
        finetuned_output = f"""
# 🟢 第一次微調 BERT

### 📈 評估指標

| 指標 | 數值 |
|------|------|
| **F1 Score** | {results['eval_f1']:.4f} |
| **Accuracy** | {results['eval_accuracy']:.4f} |
| **Precision** | {results['eval_precision']:.4f} |
| **Recall** | {results['eval_recall']:.4f} |
| **Sensitivity** | {results['eval_sensitivity']:.4f} |
| **Specificity** | {results['eval_specificity']:.4f} |
| **AUC** | {results['eval_auc']:.4f} |

### 📈 混淆矩陣

|  | 預測:存活 | 預測:死亡 |
|---|-----------|-----------|
| **實際:存活** | TN={results['eval_tn']} | FP={results['eval_fp']} |
| **實際:死亡** | FN={results['eval_fn']} | TP={results['eval_tp']} |
        """
        
        return data_info, baseline_output, finetuned_output
        
    except Exception as e:
        import traceback
        error_msg = f"❌ 錯誤:{str(e)}\n\n詳細錯誤訊息:\n{traceback.format_exc()}"
        return error_msg, "", ""

def train_second_wrapper(
    base_model_choice, file, weight_mult, epochs, batch_size, lr, warmup, best_metric
):
    """二次微調的包裝函數"""
    
    if base_model_choice == "請先進行第一次微調":
        return "請先在「第一次微調」頁面訓練模型", ""
    
    if file is None:
        return "請上傳新的訓練數據 CSV 檔案", ""
    
    try:
        # 解析基礎模型路徑
        base_model_path = base_model_choice
        
        # 讀取第一次模型資訊
        with open('./saved_models_list.json', 'r') as f:
            models_list = json.load(f)
        
        base_model_info = None
        for model_info in models_list:
            if model_info['model_path'] == base_model_path:
                base_model_info = model_info
                break
        
        if base_model_info is None:
            return "找不到基礎模型資訊", ""
        
        # 使用第一次的參數(二次微調不更換方法)
        tuning_method = base_model_info['tuning_method']
        
        # 獲取第一次的 PEFT 參數
        lora_r = 16
        lora_alpha = 32
        lora_dropout = 0.1
        lora_modules = "query,value"
        adalora_init_r = 12
        adalora_target_r = 8
        adalora_tinit = 0
        adalora_tfinal = 0
        adalora_delta_t = 1
        
        results = run_original_code_with_tuning(
            file_path=file.name,
            weight_multiplier=weight_mult,
            epochs=int(epochs),
            batch_size=int(batch_size),
            learning_rate=lr,
            warmup_steps=int(warmup),
            tuning_method=tuning_method,
            best_metric=best_metric,
            lora_r=lora_r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            lora_modules=lora_modules,
            adalora_init_r=adalora_init_r,
            adalora_target_r=adalora_target_r,
            adalora_tinit=adalora_tinit,
            adalora_tfinal=adalora_tfinal,
            adalora_delta_t=adalora_delta_t,
            is_second_finetuning=True,
            base_model_path=base_model_path
        )
        
        data_info = f"""
# 📊 二次微調結果

## 🔧 訓練配置
- **基礎模型**: {base_model_path}
- **微調方法**: {results['tuning_method']} (繼承自第一次)
- **最佳化指標**: {results['best_metric']}
- **最佳指標值**: {results['best_metric_value']:.4f}

## ⚙️ 訓練參數
- **權重倍數**: {weight_mult}x
- **訓練輪數**: {epochs}
- **批次大小**: {batch_size}
- **學習率**: {lr}
- **Warmup Steps**: {warmup}

✅ 二次微調完成!可進行預測或新數據測試!
        """
        
        finetuned_output = f"""
# 🟢 二次微調 BERT

### 📈 評估指標

| 指標 | 數值 |
|------|------|
| **F1 Score** | {results['eval_f1']:.4f} |
| **Accuracy** | {results['eval_accuracy']:.4f} |
| **Precision** | {results['eval_precision']:.4f} |
| **Recall** | {results['eval_recall']:.4f} |
| **Sensitivity** | {results['eval_sensitivity']:.4f} |
| **Specificity** | {results['eval_specificity']:.4f} |
| **AUC** | {results['eval_auc']:.4f} |

### 📈 混淆矩陣

|  | 預測:存活 | 預測:死亡 |
|---|-----------|-----------|
| **實際:存活** | TN={results['eval_tn']} | FP={results['eval_fp']} |
| **實際:死亡** | FN={results['eval_fn']} | TP={results['eval_tp']} |
        """
        
        return data_info, finetuned_output
        
    except Exception as e:
        import traceback
        error_msg = f"❌ 錯誤:{str(e)}\n\n詳細錯誤訊息:\n{traceback.format_exc()}"
        return error_msg, ""

def test_new_data_wrapper(test_file, baseline_choice, first_choice, second_choice):
    """新數據測試的包裝函數"""
    
    if test_file is None:
        return "請上傳測試數據 CSV 檔案", "", ""
    
    try:
        all_results = test_on_new_data(
            test_file.name,
            baseline_choice,
            first_choice,
            second_choice
        )
        
        # 格式化輸出
        outputs = []
        
        # 1. 純 BERT
        if all_results['baseline']:
            r = all_results['baseline']
            baseline_output = f"""
# 🔵 純 BERT (Baseline)

| 指標 | 數值 |
|------|------|
| **F1 Score** | {r['f1']:.4f} |
| **Accuracy** | {r['accuracy']:.4f} |
| **Precision** | {r['precision']:.4f} |
| **Recall** | {r['recall']:.4f} |
| **Sensitivity** | {r['sensitivity']:.4f} |
| **Specificity** | {r['specificity']:.4f} |
| **AUC** | {r['auc']:.4f} |

### 混淆矩陣
|  | 預測:存活 | 預測:死亡 |
|---|-----------|-----------|
| **實際:存活** | TN={r['tn']} | FP={r['fp']} |
| **實際:死亡** | FN={r['fn']} | TP={r['tp']} |
            """
        else:
            baseline_output = "未選擇評估純 BERT"
        outputs.append(baseline_output)
        
        # 2. 第一次微調
        if all_results['first']:
            r = all_results['first']
            first_output = f"""
# 🟢 第一次微調模型

| 指標 | 數值 |
|------|------|
| **F1 Score** | {r['f1']:.4f} |
| **Accuracy** | {r['accuracy']:.4f} |
| **Precision** | {r['precision']:.4f} |
| **Recall** | {r['recall']:.4f} |
| **Sensitivity** | {r['sensitivity']:.4f} |
| **Specificity** | {r['specificity']:.4f} |
| **AUC** | {r['auc']:.4f} |

### 混淆矩陣
|  | 預測:存活 | 預測:死亡 |
|---|-----------|-----------|
| **實際:存活** | TN={r['tn']} | FP={r['fp']} |
| **實際:死亡** | FN={r['fn']} | TP={r['tp']} |
            """
        else:
            first_output = "未選擇第一次微調模型"
        outputs.append(first_output)
        
        # 3. 第二次微調
        if all_results['second']:
            r = all_results['second']
            second_output = f"""
# 🟡 第二次微調模型

| 指標 | 數值 |
|------|------|
| **F1 Score** | {r['f1']:.4f} |
| **Accuracy** | {r['accuracy']:.4f} |
| **Precision** | {r['precision']:.4f} |
| **Recall** | {r['recall']:.4f} |
| **Sensitivity** | {r['sensitivity']:.4f} |
| **Specificity** | {r['specificity']:.4f} |
| **AUC** | {r['auc']:.4f} |

### 混淆矩陣
|  | 預測:存活 | 預測:死亡 |
|---|-----------|-----------|
| **實際:存活** | TN={r['tn']} | FP={r['fp']} |
| **實際:死亡** | FN={r['fn']} | TP={r['tp']} |
            """
        else:
            second_output = "未選擇第二次微調模型"
        outputs.append(second_output)
        
        return outputs[0], outputs[1], outputs[2]
        
    except Exception as e:
        import traceback
        error_msg = f"❌ 錯誤:{str(e)}\n\n詳細錯誤訊息:\n{traceback.format_exc()}"
        return error_msg, "", ""

# ============================================================================
# Gradio 介面
# ============================================================================

with gr.Blocks(title="BERT 二次微調平台", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown("""
    # 🥼 BERT 乳癌存活預測 - 二次微調完整平台
    
    ### 🌟 功能特色:
    - 🎯 第一次微調:從純 BERT 開始訓練
    - 🔄 第二次微調:基於第一次模型用新數據繼續訓練
    - 📊 新數據測試:比較三個模型在新數據的表現
    - 🔮 預測功能:使用訓練好的模型進行預測
    """)
    
    # Tab 1: 第一次微調
    with gr.Tab("1️⃣ 第一次微調"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 📤 資料上傳")
                file_input_first = gr.File(label="上傳訓練數據 CSV", file_types=[".csv"])
                
                gr.Markdown("### 🔧 微調方法選擇")
                tuning_method_first = gr.Radio(
                    choices=["Full Fine-tuning", "LoRA", "AdaLoRA"],
                    value="Full Fine-tuning",
                    label="選擇微調方法"
                )
                
                gr.Markdown("### 🎯 最佳模型選擇")
                best_metric_first = gr.Dropdown(
                    choices=["f1", "accuracy", "precision", "recall", "sensitivity", "specificity", "auc"],
                    value="f1",
                    label="選擇最佳化指標"
                )
                
                gr.Markdown("### ⚙️ 訓練參數")
                weight_slider_first = gr.Slider(0.1, 2.0, value=0.8, step=0.1, label="權重倍數")
                epochs_input_first = gr.Number(value=8, label="訓練輪數")
                batch_size_input_first = gr.Number(value=16, label="批次大小")
                lr_input_first = gr.Number(value=2e-5, label="學習率")
                warmup_input_first = gr.Number(value=200, label="Warmup Steps")
                
                # LoRA 參數
                with gr.Column(visible=False) as lora_params_first:
                    gr.Markdown("### 🔷 LoRA 參數")
                    lora_r_first = gr.Slider(4, 64, value=16, step=4, label="LoRA Rank (r)")
                    lora_alpha_first = gr.Slider(8, 128, value=32, step=8, label="LoRA Alpha")
                    lora_dropout_first = gr.Slider(0.0, 0.5, value=0.1, step=0.05, label="LoRA Dropout")
                    lora_modules_first = gr.Textbox(value="query,value", label="目標模組")
                
                # AdaLoRA 參數
                with gr.Column(visible=False) as adalora_params_first:
                    gr.Markdown("### 🔶 AdaLoRA 參數")
                    adalora_init_r_first = gr.Slider(4, 64, value=12, step=4, label="初始 Rank")
                    adalora_target_r_first = gr.Slider(4, 64, value=8, step=4, label="目標 Rank")
                    adalora_tinit_first = gr.Number(value=0, label="Tinit")
                    adalora_tfinal_first = gr.Number(value=0, label="Tfinal")
                    adalora_delta_t_first = gr.Number(value=1, label="Delta T")
                
                train_button_first = gr.Button("🚀 開始第一次微調", variant="primary", size="lg")
            
            with gr.Column(scale=2):
                gr.Markdown("### 📊 第一次微調結果")
                data_info_output_first = gr.Markdown(value="等待訓練...")
                with gr.Row():
                    baseline_output_first = gr.Markdown(value="### 純 BERT\n等待訓練...")
                    finetuned_output_first = gr.Markdown(value="### 第一次微調\n等待訓練...")
    
    # Tab 2: 二次微調
    with gr.Tab("2️⃣ 二次微調"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 🔄 選擇基礎模型")
                base_model_dropdown = gr.Dropdown(
                    label="選擇第一次微調的模型",
                    choices=["請先進行第一次微調"],
                    value="請先進行第一次微調"
                )
                refresh_base_models = gr.Button("🔄 重新整理模型列表", size="sm")
                
                gr.Markdown("### 📤 上傳新訓練數據")
                file_input_second = gr.File(label="上傳新的訓練數據 CSV", file_types=[".csv"])
                
                gr.Markdown("### ⚙️ 訓練參數")
                gr.Markdown("⚠️ 微調方法將自動繼承第一次微調的方法")
                best_metric_second = gr.Dropdown(
                    choices=["f1", "accuracy", "precision", "recall", "sensitivity", "specificity", "auc"],
                    value="f1",
                    label="選擇最佳化指標"
                )
                weight_slider_second = gr.Slider(0.1, 2.0, value=0.8, step=0.1, label="權重倍數")
                epochs_input_second = gr.Number(value=5, label="訓練輪數", info="建議比第一次少")
                batch_size_input_second = gr.Number(value=16, label="批次大小")
                lr_input_second = gr.Number(value=1e-5, label="學習率", info="建議比第一次小")
                warmup_input_second = gr.Number(value=100, label="Warmup Steps")
                
                train_button_second = gr.Button("🚀 開始二次微調", variant="primary", size="lg")
            
            with gr.Column(scale=2):
                gr.Markdown("### 📊 二次微調結果")
                data_info_output_second = gr.Markdown(value="等待訓練...")
                finetuned_output_second = gr.Markdown(value="### 二次微調\n等待訓練...")
    
    # Tab 3: 新數據測試
    with gr.Tab("3️⃣ 新數據測試"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 📤 上傳測試數據")
                test_file_input = gr.File(label="上傳測試數據 CSV", file_types=[".csv"])
                
                gr.Markdown("### 🎯 選擇要比較的模型")
                gr.Markdown("可選擇 1-3 個模型進行比較")
                
                baseline_test_choice = gr.Radio(
                    choices=["評估純 BERT", "跳過"],
                    value="評估純 BERT",
                    label="純 BERT (Baseline)"
                )
                
                first_model_test_dropdown = gr.Dropdown(
                    label="第一次微調模型",
                    choices=["請選擇"],
                    value="請選擇"
                )
                
                second_model_test_dropdown = gr.Dropdown(
                    label="第二次微調模型",
                    choices=["請選擇"],
                    value="請選擇"
                )
                
                refresh_test_models = gr.Button("🔄 重新整理模型列表", size="sm")
                test_button = gr.Button("📊 開始測試", variant="primary", size="lg")
            
            with gr.Column(scale=2):
                gr.Markdown("### 📊 新數據測試結果 - 三模型比較")
                with gr.Row():
                    baseline_test_output = gr.Markdown(value="### 純 BERT\n等待測試...")
                    first_test_output = gr.Markdown(value="### 第一次微調\n等待測試...")
                    second_test_output = gr.Markdown(value="### 二次微調\n等待測試...")
    
    # Tab 4: 預測
    with gr.Tab("4️⃣ 模型預測"):
        gr.Markdown("""
        ### 使用訓練好的模型進行預測
        選擇已訓練的模型,輸入病歷文本進行預測。
        """)
        
        with gr.Row():
            with gr.Column():
                model_dropdown = gr.Dropdown(
                    label="選擇模型",
                    choices=["請先訓練模型"],
                    value="請先訓練模型"
                )
                refresh_predict_models = gr.Button("🔄 重新整理模型列表", size="sm")
                
                text_input = gr.Textbox(
                    label="輸入病歷文本",
                    placeholder="請輸入患者的病歷描述(英文)...",
                    lines=10
                )
                
                predict_button = gr.Button("🔮 開始預測", variant="primary", size="lg")
            
            with gr.Column():
                gr.Markdown("### 預測結果比較")
                baseline_prediction_output = gr.Markdown(label="未微調 BERT", value="等待預測...")
                finetuned_prediction_output = gr.Markdown(label="微調 BERT", value="等待預測...")
    
    # Tab 5: 使用說明
    with gr.Tab("📖 使用說明"):
        gr.Markdown("""
        ## 🔄 二次微調流程說明
        
        ### 步驟 1: 第一次微調
        1. 上傳訓練數據 A (CSV 格式: Text, label)
        2. 選擇微調方法 (Full Fine-tuning / LoRA / AdaLoRA)
        3. 調整訓練參數
        4. 開始訓練
        5. 系統會自動比較純 BERT vs 第一次微調的表現
        
        ### 步驟 2: 二次微調
        1. 選擇已訓練的第一次微調模型
        2. 上傳新的訓練數據 B
        3. 調整訓練參數 (建議 epochs 更少, learning rate 更小)
        4. 開始訓練 (方法自動繼承第一次)
        5. 模型會基於第一次的權重繼續學習
        
        ### 步驟 3: 新數據測試
        1. 上傳測試數據 C
        2. 選擇要比較的模型 (純 BERT / 第一次 / 第二次)
        3. 系統會並排顯示三個模型的表現
        
        ### 步驟 4: 預測
        1. 選擇任一已訓練模型
        2. 輸入病歷文本
        3. 查看預測結果
        
        ## 🎯 微調方法說明
        
        | 方法 | 訓練速度 | 記憶體 | 效果 |
        |------|---------|--------|------|
        | **Full Fine-tuning** | 1x (基準) | 高 | 最佳 |
        | **LoRA** | 3-5x 快 | 低 | 良好 |
        | **AdaLoRA** | 3-5x 快 | 低 | 良好 |
        
        ## 💡 二次微調建議
        
        ### 訓練參數調整:
        - **Epochs**: 第二次建議 3-5 輪 (第一次通常 8-10 輪)
        - **Learning Rate**: 第二次建議 1e-5 (第一次通常 2e-5)
        - **Warmup Steps**: 第二次建議減半
        
        ### 適用場景:
        1. **領域適應**: 第一次用通用醫療數據,第二次用特定醫院數據
        2. **增量學習**: 隨時間增加新病例數據
        3. **數據稀缺**: 先用大量相關數據預訓練,再用少量目標數據微調
        
        ## ⚠️ 注意事項
        
        - CSV 格式必須包含 `Text` 和 `label` 欄位
        - 第二次微調會自動使用第一次的微調方法
        - 建議第二次的學習率比第一次小,避免破壞已學習的知識
        - 新數據測試可以同時評估最多 3 個模型
        
        ## 📊 指標說明
        
        - **F1 Score**: 平衡指標,綜合考慮精確率和召回率
        - **Accuracy**: 整體準確率
        - **Precision**: 預測為死亡中的準確率
        - **Recall/Sensitivity**: 實際死亡中被正確識別的比例
        - **Specificity**: 實際存活中被正確識別的比例
        - **AUC**: ROC 曲線下面積,整體分類能力
        """)
    
    # ==================== 事件綁定 ====================
    
    # 第一次微調 - 參數面板顯示/隱藏
    def update_first_params(method):
        if method == "LoRA":
            return gr.update(visible=True), gr.update(visible=False)
        elif method == "AdaLoRA":
            return gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False)
    
    tuning_method_first.change(
        fn=update_first_params,
        inputs=[tuning_method_first],
        outputs=[lora_params_first, adalora_params_first]
    )
    
    # 第一次微調按鈕
    train_button_first.click(
        fn=train_first_wrapper,
        inputs=[
            file_input_first, tuning_method_first, weight_slider_first,
            epochs_input_first, batch_size_input_first, lr_input_first,
            warmup_input_first, best_metric_first,
            lora_r_first, lora_alpha_first, lora_dropout_first, lora_modules_first,
            adalora_init_r_first, adalora_target_r_first, adalora_tinit_first,
            adalora_tfinal_first, adalora_delta_t_first
        ],
        outputs=[data_info_output_first, baseline_output_first, finetuned_output_first]
    )
    
    # 刷新基礎模型列表
    def refresh_base_models_list():
        choices = get_first_finetuning_models()
        return gr.update(choices=choices, value=choices[0])
    
    refresh_base_models.click(
        fn=refresh_base_models_list,
        outputs=[base_model_dropdown]
    )
    
    # 二次微調按鈕
    train_button_second.click(
        fn=train_second_wrapper,
        inputs=[
            base_model_dropdown, file_input_second, weight_slider_second,
            epochs_input_second, batch_size_input_second, lr_input_second,
            warmup_input_second, best_metric_second
        ],
        outputs=[data_info_output_second, finetuned_output_second]
    )
    
    # 刷新測試模型列表
    def refresh_test_models_list():
        all_models = get_available_models()
        first_models = get_first_finetuning_models()
        
        # 篩選第二次微調模型
        with open('./saved_models_list.json', 'r') as f:
            models_list = json.load(f)
        second_models = [m['model_path'] for m in models_list if m.get('is_second_finetuning', False)]
        
        if len(second_models) == 0:
            second_models = ["請選擇"]
        
        return (
            gr.update(choices=first_models if first_models[0] != "請先進行第一次微調" else ["請選擇"], value="請選擇"),
            gr.update(choices=second_models, value="請選擇")
        )
    
    refresh_test_models.click(
        fn=refresh_test_models_list,
        outputs=[first_model_test_dropdown, second_model_test_dropdown]
    )
    
    # 測試按鈕
    test_button.click(
        fn=test_new_data_wrapper,
        inputs=[test_file_input, baseline_test_choice, first_model_test_dropdown, second_model_test_dropdown],
        outputs=[baseline_test_output, first_test_output, second_test_output]
    )
    
    # 刷新預測模型列表
    def refresh_predict_models_list():
        choices = get_available_models()
        return gr.update(choices=choices, value=choices[0])
    
    refresh_predict_models.click(
        fn=refresh_predict_models_list,
        outputs=[model_dropdown]
    )
    
    # 預測按鈕
    predict_button.click(
        fn=predict_text,
        inputs=[model_dropdown, text_input],
        outputs=[baseline_prediction_output, finetuned_prediction_output]
    )

if __name__ == "__main__":
    demo.launch()