Spaces:
Sleeping
Sleeping
update
Browse files
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 🥰🎤📝
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Anime Whisper Demo
|
| 3 |
emoji: 🥰🎤📝
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.5.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -28,8 +28,6 @@ generate_kwargs = {
|
|
| 28 |
model_dict = {
|
| 29 |
"whisper-large-v2": "openai/whisper-large-v2",
|
| 30 |
"whisper-large-v3": "openai/whisper-large-v3",
|
| 31 |
-
"whisper-large-v3-turbo": "openai/whisper-large-v3-turbo",
|
| 32 |
-
"kotoba-whisper-v1.0": "kotoba-tech/kotoba-whisper-v1.0",
|
| 33 |
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
|
| 34 |
"anime-whisper": "litagin/anime-whisper",
|
| 35 |
}
|
|
@@ -47,9 +45,9 @@ logger.success("Pipelines initialized!")
|
|
| 47 |
|
| 48 |
|
| 49 |
@spaces.GPU
|
| 50 |
-
def transcribe_common(audio: str, model: str) ->
|
| 51 |
if not audio:
|
| 52 |
-
return "No audio file"
|
| 53 |
filename = Path(audio).name
|
| 54 |
logger.info(f"Model: {model}")
|
| 55 |
logger.info(f"Audio: {filename}")
|
|
@@ -60,35 +58,22 @@ def transcribe_common(audio: str, model: str) -> tuple[str, float]:
|
|
| 60 |
logger.info(f"Duration: {duration:.2f}s")
|
| 61 |
if duration > 15:
|
| 62 |
logger.error(f"Audio too long, limit is 15 seconds, got {duration:.2f}s")
|
| 63 |
-
return f"Audio too long, limit is 15 seconds, got {duration:.2f}s"
|
| 64 |
start_time = time.time()
|
| 65 |
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
|
| 66 |
end_time = time.time()
|
| 67 |
logger.success(f"Finished in {end_time - start_time:.2f}s\n{result}")
|
| 68 |
-
return result
|
| 69 |
|
| 70 |
|
| 71 |
-
def
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
-
def
|
| 76 |
-
return transcribe_common(audio, "whisper-large-v3")
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def transcribe_large_v3_turbo(audio) -> tuple[str, float]:
|
| 80 |
-
return transcribe_common(audio, "whisper-large-v3-turbo")
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def transcribe_kotoba_v1(audio) -> tuple[str, float]:
|
| 84 |
-
return transcribe_common(audio, "kotoba-whisper-v1.0")
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def transcribe_kotoba_v2(audio) -> tuple[str, float]:
|
| 88 |
-
return transcribe_common(audio, "kotoba-whisper-v2.0")
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def transcribe_anime_whisper(audio) -> tuple[str, float]:
|
| 92 |
return transcribe_common(audio, "anime-whisper")
|
| 93 |
|
| 94 |
|
|
@@ -99,17 +84,16 @@ initial_md = """
|
|
| 99 |
- https://huggingface.co/litagin/anime-whisper
|
| 100 |
- デモでは**音声は15秒まで**しか受け付けません
|
| 101 |
- 日本語のみ対応 (Japanese only)
|
| 102 |
-
-
|
| 103 |
-
- 比較できるように他モデルもついでに試せる
|
| 104 |
|
| 105 |
pipeに渡しているkwargsは以下の最低限のもの:
|
| 106 |
```python
|
| 107 |
generate_kwargs = {
|
| 108 |
"language": "Japanese",
|
| 109 |
"do_sample": False,
|
| 110 |
-
"num_beams": 1,
|
| 111 |
"no_repeat_ngram_size": 0,
|
| 112 |
-
"max_new_tokens": 64,
|
| 113 |
}
|
| 114 |
```
|
| 115 |
"""
|
|
@@ -121,54 +105,29 @@ with gr.Blocks() as app:
|
|
| 121 |
with gr.Column():
|
| 122 |
gr.Markdown("### Anime-Whisper")
|
| 123 |
button_galgame = gr.Button("Transcribe with Anime-Whisper")
|
| 124 |
-
time_galgame = gr.Textbox(label="Time taken")
|
| 125 |
output_galgame = gr.Textbox(label="Result")
|
| 126 |
with gr.Row():
|
|
|
|
|
|
|
| 127 |
with gr.Column():
|
| 128 |
gr.Markdown("### Whisper-Large-V2")
|
| 129 |
-
button_v2 = gr.Button("Transcribe with Whisper-Large-V2")
|
| 130 |
-
time_v2 = gr.Textbox(label="Time taken")
|
| 131 |
output_v2 = gr.Textbox(label="Result")
|
| 132 |
with gr.Column():
|
| 133 |
gr.Markdown("### Whisper-Large-V3")
|
| 134 |
-
button_v3 = gr.Button("Transcribe with Whisper-Large-V3")
|
| 135 |
-
time_v3 = gr.Textbox(label="Time taken")
|
| 136 |
output_v3 = gr.Textbox(label="Result")
|
| 137 |
-
with gr.Column():
|
| 138 |
-
gr.Markdown("### Whisper-Large-V3-Turbo")
|
| 139 |
-
button_v3_turbo = gr.Button("Transcribe with Whisper-Large-V3-Turbo")
|
| 140 |
-
time_v3_turbo = gr.Textbox(label="Time taken")
|
| 141 |
-
output_v3_turbo = gr.Textbox(label="Result")
|
| 142 |
-
with gr.Row():
|
| 143 |
-
with gr.Column():
|
| 144 |
-
gr.Markdown("### Kotoba-Whisper-V1.0")
|
| 145 |
-
button_kotoba_v1 = gr.Button("Transcribe with Kotoba-Whisper-V1.0")
|
| 146 |
-
time_kotoba_v1 = gr.Textbox(label="Time taken")
|
| 147 |
-
output_kotoba_v1 = gr.Textbox(label="Result")
|
| 148 |
with gr.Column():
|
| 149 |
gr.Markdown("### Kotoba-Whisper-V2.0")
|
| 150 |
-
button_kotoba_v2 = gr.Button("Transcribe with Kotoba-Whisper-V2.0")
|
| 151 |
-
time_kotoba_v2 = gr.Textbox(label="Time taken")
|
| 152 |
output_kotoba_v2 = gr.Textbox(label="Result")
|
| 153 |
|
| 154 |
-
button_v2.click(transcribe_large_v2, inputs=audio, outputs=[output_v2, time_v2])
|
| 155 |
-
button_v3.click(transcribe_large_v3, inputs=audio, outputs=[output_v3, time_v3])
|
| 156 |
-
button_v3_turbo.click(
|
| 157 |
-
transcribe_large_v3_turbo,
|
| 158 |
-
inputs=audio,
|
| 159 |
-
outputs=[output_v3_turbo, time_v3_turbo],
|
| 160 |
-
)
|
| 161 |
-
button_kotoba_v1.click(
|
| 162 |
-
transcribe_kotoba_v1, inputs=audio, outputs=[output_kotoba_v1, time_kotoba_v1]
|
| 163 |
-
)
|
| 164 |
-
button_kotoba_v2.click(
|
| 165 |
-
transcribe_kotoba_v2, inputs=audio, outputs=[output_kotoba_v2, time_kotoba_v2]
|
| 166 |
-
)
|
| 167 |
button_galgame.click(
|
| 168 |
transcribe_anime_whisper,
|
| 169 |
-
inputs=audio,
|
| 170 |
-
outputs=[output_galgame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
)
|
| 172 |
|
| 173 |
-
# app.load(warmup, inputs=[], outputs=[warmup_result], queue=True)
|
| 174 |
app.launch(inbrowser=True)
|
|
|
|
| 28 |
model_dict = {
|
| 29 |
"whisper-large-v2": "openai/whisper-large-v2",
|
| 30 |
"whisper-large-v3": "openai/whisper-large-v3",
|
|
|
|
|
|
|
| 31 |
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
|
| 32 |
"anime-whisper": "litagin/anime-whisper",
|
| 33 |
}
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
@spaces.GPU
|
| 48 |
+
def transcribe_common(audio: str, model: str) -> str:
|
| 49 |
if not audio:
|
| 50 |
+
return "No audio file"
|
| 51 |
filename = Path(audio).name
|
| 52 |
logger.info(f"Model: {model}")
|
| 53 |
logger.info(f"Audio: {filename}")
|
|
|
|
| 58 |
logger.info(f"Duration: {duration:.2f}s")
|
| 59 |
if duration > 15:
|
| 60 |
logger.error(f"Audio too long, limit is 15 seconds, got {duration:.2f}s")
|
| 61 |
+
return f"Audio too long, limit is 15 seconds, got {duration:.2f}s"
|
| 62 |
start_time = time.time()
|
| 63 |
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
|
| 64 |
end_time = time.time()
|
| 65 |
logger.success(f"Finished in {end_time - start_time:.2f}s\n{result}")
|
| 66 |
+
return result
|
| 67 |
|
| 68 |
|
| 69 |
+
def transcribe_others(audio) -> tuple[str, str, str]:
|
| 70 |
+
result_v2 = transcribe_common(audio, "whisper-large-v2")
|
| 71 |
+
result_v3 = transcribe_common(audio, "whisper-large-v3")
|
| 72 |
+
result_kotoba_v2 = transcribe_common(audio, "kotoba-whisper-v2.0")
|
| 73 |
+
return result_v2, result_v3, result_kotoba_v2
|
| 74 |
|
| 75 |
|
| 76 |
+
def transcribe_anime_whisper(audio) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
return transcribe_common(audio, "anime-whisper")
|
| 78 |
|
| 79 |
|
|
|
|
| 84 |
- https://huggingface.co/litagin/anime-whisper
|
| 85 |
- デモでは**音声は15秒まで**しか受け付けません
|
| 86 |
- 日本語のみ対応 (Japanese only)
|
| 87 |
+
- 比較のために [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) と [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) と [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) も用意しています
|
|
|
|
| 88 |
|
| 89 |
pipeに渡しているkwargsは以下の最低限のもの:
|
| 90 |
```python
|
| 91 |
generate_kwargs = {
|
| 92 |
"language": "Japanese",
|
| 93 |
"do_sample": False,
|
| 94 |
+
"num_beams": 1,[openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3)
|
| 95 |
"no_repeat_ngram_size": 0,
|
| 96 |
+
"max_new_tokens": 64, # 結果が長いときは途中で打ち切る
|
| 97 |
}
|
| 98 |
```
|
| 99 |
"""
|
|
|
|
| 105 |
with gr.Column():
|
| 106 |
gr.Markdown("### Anime-Whisper")
|
| 107 |
button_galgame = gr.Button("Transcribe with Anime-Whisper")
|
|
|
|
| 108 |
output_galgame = gr.Textbox(label="Result")
|
| 109 |
with gr.Row():
|
| 110 |
+
gr.Markdown("### Comparison")
|
| 111 |
+
button_others = gr.Button("Transcribe with other models")
|
| 112 |
with gr.Column():
|
| 113 |
gr.Markdown("### Whisper-Large-V2")
|
|
|
|
|
|
|
| 114 |
output_v2 = gr.Textbox(label="Result")
|
| 115 |
with gr.Column():
|
| 116 |
gr.Markdown("### Whisper-Large-V3")
|
|
|
|
|
|
|
| 117 |
output_v3 = gr.Textbox(label="Result")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
with gr.Column():
|
| 119 |
gr.Markdown("### Kotoba-Whisper-V2.0")
|
|
|
|
|
|
|
| 120 |
output_kotoba_v2 = gr.Textbox(label="Result")
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
button_galgame.click(
|
| 123 |
transcribe_anime_whisper,
|
| 124 |
+
inputs=[audio],
|
| 125 |
+
outputs=[output_galgame],
|
| 126 |
+
)
|
| 127 |
+
button_others.click(
|
| 128 |
+
transcribe_others,
|
| 129 |
+
inputs=[audio],
|
| 130 |
+
outputs=[output_v2, output_v3, output_kotoba_v2],
|
| 131 |
)
|
| 132 |
|
|
|
|
| 133 |
app.launch(inbrowser=True)
|