Spaces:
Sleeping
Sleeping
soupstick
commited on
Commit
·
6e36e0d
1
Parent(s):
7ead058
fix: route Fireworks directly w/ OpenAI client; add HF Router fallback; pydantic init
Browse files- llm_provider.py +132 -45
- requirements.txt +2 -1
llm_provider.py
CHANGED
|
@@ -1,100 +1,187 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
import os, logging
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
-
|
| 5 |
from langchain_core.language_models.chat_models import BaseChatModel
|
| 6 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
| 7 |
from langchain_core.outputs import ChatGeneration, ChatResult
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
load_dotenv()
|
| 10 |
log = logging.getLogger("fraud-analyst")
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
|
| 13 |
-
FIREWORKS_API_KEY = os.getenv("fireworks_api_huggingface") or os.getenv("HF_TOKEN")
|
| 14 |
-
FW_PRIMARY_MODEL = os.getenv("FW_PRIMARY_MODEL", "openai/gpt-oss-20b")
|
| 15 |
-
FW_SECONDARY_MODEL = os.getenv("FW_SECONDARY_MODEL", "Qwen/Qwen3-Coder-30B-A3B-Instruct")
|
| 16 |
-
|
| 17 |
SUMMARY_NOTICE = "🔌 Please connect to an inference point to generate summary."
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
model: str
|
| 21 |
api_key: str | None = None
|
| 22 |
temperature: float = 0.2
|
| 23 |
max_new_tokens: int = 256
|
| 24 |
-
timeout: int = 60
|
| 25 |
|
| 26 |
-
def __init__(self,
|
| 27 |
-
super().__init__()
|
| 28 |
-
|
| 29 |
-
self.
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
@property
|
| 33 |
def _llm_type(self) -> str:
|
| 34 |
-
return "
|
| 35 |
|
| 36 |
def _convert(self, messages):
|
| 37 |
out=[]
|
| 38 |
for m in messages:
|
| 39 |
-
if isinstance(m, SystemMessage):
|
| 40 |
-
|
| 41 |
-
elif isinstance(m,
|
| 42 |
-
|
| 43 |
-
elif isinstance(m, AIMessage):
|
| 44 |
-
out.append({"role":"assistant","content":m.content})
|
| 45 |
-
else:
|
| 46 |
-
out.append({"role":"user","content":str(getattr(m,"content",m))})
|
| 47 |
return out
|
| 48 |
|
| 49 |
def _generate(self, messages, stop=None, run_manager=None, **kwargs) -> ChatResult:
|
| 50 |
if not self.api_key:
|
| 51 |
gen = ChatGeneration(message=AIMessage(content=""))
|
| 52 |
-
return ChatResult(generations=[gen], llm_output={"error":
|
| 53 |
try:
|
| 54 |
resp = self._client.chat.completions.create(
|
| 55 |
-
model=self.model,
|
| 56 |
messages=self._convert(messages),
|
|
|
|
|
|
|
| 57 |
stream=False,
|
| 58 |
-
max_tokens=kwargs.get("max_tokens", 256),
|
| 59 |
-
temperature=kwargs.get("temperature", 0.2),
|
| 60 |
)
|
| 61 |
text = ""
|
| 62 |
if hasattr(resp, "choices") and resp.choices:
|
| 63 |
ch = resp.choices[0]
|
| 64 |
-
|
|
|
|
| 65 |
text = ch.message.content
|
| 66 |
-
elif hasattr(ch, "text") and ch.text:
|
| 67 |
-
text = ch.text
|
| 68 |
gen = ChatGeneration(message=AIMessage(content=text or ""))
|
| 69 |
return ChatResult(generations=[gen], llm_output={"model": self.model})
|
| 70 |
except Exception as e:
|
| 71 |
-
log.warning(f"Fireworks call failed for {self.model}: {type(e).__name__}: {str(e)[:200]}")
|
| 72 |
gen = ChatGeneration(message=AIMessage(content=""))
|
| 73 |
return ChatResult(generations=[gen], llm_output={"error": str(e)})
|
| 74 |
|
| 75 |
-
def
|
| 76 |
if not FIREWORKS_API_KEY: return False
|
| 77 |
try:
|
| 78 |
-
|
| 79 |
-
_ =
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
return True
|
| 86 |
except Exception as e:
|
| 87 |
-
log.warning(f"
|
| 88 |
return False
|
| 89 |
|
|
|
|
| 90 |
def build_chat_llm():
|
| 91 |
-
|
| 92 |
-
if FIREWORKS_API_KEY and
|
| 93 |
-
log.info(f"Using chat model: {FW_PRIMARY_MODEL}")
|
| 94 |
-
return
|
| 95 |
-
if FIREWORKS_API_KEY and
|
| 96 |
-
log.info(f"Using fallback chat model: {FW_SECONDARY_MODEL}")
|
| 97 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
log.warning("No working chat model; notice will be shown.")
|
| 99 |
return None
|
| 100 |
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
import os, logging
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
from langchain_core.language_models.chat_models import BaseChatModel
|
| 6 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
| 7 |
from langchain_core.outputs import ChatGeneration, ChatResult
|
| 8 |
|
| 9 |
+
# Providers
|
| 10 |
+
from openai import OpenAI # Fireworks OpenAI-compatible
|
| 11 |
+
from huggingface_hub import InferenceClient # HF Router (provider routing)
|
| 12 |
+
|
| 13 |
load_dotenv()
|
| 14 |
log = logging.getLogger("fraud-analyst")
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
SUMMARY_NOTICE = "🔌 Please connect to an inference point to generate summary."
|
| 18 |
|
| 19 |
+
def _first_env(*names):
|
| 20 |
+
for n in names:
|
| 21 |
+
v = os.getenv(n)
|
| 22 |
+
if v:
|
| 23 |
+
return v
|
| 24 |
+
return None
|
| 25 |
+
|
| 26 |
+
# Secrets (your repo secret name included)
|
| 27 |
+
FIREWORKS_API_KEY = _first_env(
|
| 28 |
+
"fireworks_api_huggingface", # your HF repo secret (Fireworks key)
|
| 29 |
+
"FIREWORKS_API_HUGGINGFACE",
|
| 30 |
+
"FIREWORKS_API_KEY",
|
| 31 |
+
"OPENAI_API_KEY" # also works if you export FW key here
|
| 32 |
+
)
|
| 33 |
+
HF_TOKEN = _first_env("HF_TOKEN", "HUGGINGFACE_TOKEN")
|
| 34 |
+
|
| 35 |
+
# Model IDs for each route
|
| 36 |
+
# Fireworks (direct, OpenAI-compatible): use fully-qualified IDs
|
| 37 |
+
FW_PRIMARY_MODEL = os.getenv("FW_PRIMARY_MODEL", "accounts/openai/models/gpt-oss-20b")
|
| 38 |
+
FW_SECONDARY_MODEL = os.getenv("FW_SECONDARY_MODEL", "accounts/fireworks/models/qwen3-coder-30b-a3b-instruct")
|
| 39 |
+
# HF Router route (must use HF_TOKEN). For OpenAI SDK on HF Router you’d use `...:fireworks-ai`,
|
| 40 |
+
# but with huggingface_hub.InferenceClient+provider we pass the plain HF model id.
|
| 41 |
+
HF_PRIMARY_MODEL = os.getenv("HF_PRIMARY_MODEL", "openai/gpt-oss-20b")
|
| 42 |
+
HF_SECONDARY_MODEL = os.getenv("HF_SECONDARY_MODEL", "Qwen/Qwen3-Coder-30B-A3B-Instruct")
|
| 43 |
+
|
| 44 |
+
# ---------- Fireworks (OpenAI-compatible) driver ----------
|
| 45 |
+
class FireworksOpenAIChat(BaseChatModel):
|
| 46 |
model: str
|
| 47 |
api_key: str | None = None
|
| 48 |
temperature: float = 0.2
|
| 49 |
max_new_tokens: int = 256
|
|
|
|
| 50 |
|
| 51 |
+
def __init__(self, **data):
|
| 52 |
+
super().__init__(**data)
|
| 53 |
+
# Fireworks OpenAI-compatible endpoint
|
| 54 |
+
self._client = OpenAI(
|
| 55 |
+
base_url=os.getenv("OPENAI_API_BASE", "https://api.fireworks.ai/inference/v1"),
|
| 56 |
+
api_key=self.api_key,
|
| 57 |
+
)
|
| 58 |
|
| 59 |
@property
|
| 60 |
def _llm_type(self) -> str:
|
| 61 |
+
return "fireworks_openai_chat"
|
| 62 |
|
| 63 |
def _convert(self, messages):
|
| 64 |
out=[]
|
| 65 |
for m in messages:
|
| 66 |
+
if isinstance(m, SystemMessage): out.append({"role":"system","content":m.content})
|
| 67 |
+
elif isinstance(m, HumanMessage): out.append({"role":"user","content":m.content})
|
| 68 |
+
elif isinstance(m, AIMessage): out.append({"role":"assistant","content":m.content})
|
| 69 |
+
else: out.append({"role":"user","content":str(getattr(m,"content",m))})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
return out
|
| 71 |
|
| 72 |
def _generate(self, messages, stop=None, run_manager=None, **kwargs) -> ChatResult:
|
| 73 |
if not self.api_key:
|
| 74 |
gen = ChatGeneration(message=AIMessage(content=""))
|
| 75 |
+
return ChatResult(generations=[gen], llm_output={"error":"no_api_key"})
|
| 76 |
try:
|
| 77 |
resp = self._client.chat.completions.create(
|
| 78 |
+
model=self.model, # e.g., accounts/openai/models/gpt-oss-20b
|
| 79 |
messages=self._convert(messages),
|
| 80 |
+
temperature=kwargs.get("temperature", self.temperature),
|
| 81 |
+
max_tokens=kwargs.get("max_tokens", self.max_new_tokens),
|
| 82 |
stream=False,
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
text = ""
|
| 85 |
if hasattr(resp, "choices") and resp.choices:
|
| 86 |
ch = resp.choices[0]
|
| 87 |
+
# OpenAI SDK v1 returns .message
|
| 88 |
+
if getattr(ch, "message", None) and getattr(ch.message, "content", None):
|
| 89 |
text = ch.message.content
|
|
|
|
|
|
|
| 90 |
gen = ChatGeneration(message=AIMessage(content=text or ""))
|
| 91 |
return ChatResult(generations=[gen], llm_output={"model": self.model})
|
| 92 |
except Exception as e:
|
| 93 |
+
log.warning(f"Fireworks(OpenAI) call failed for {self.model}: {type(e).__name__}: {str(e)[:200]}")
|
| 94 |
gen = ChatGeneration(message=AIMessage(content=""))
|
| 95 |
return ChatResult(generations=[gen], llm_output={"error": str(e)})
|
| 96 |
|
| 97 |
+
def _heartbeat_fireworks(model_id: str) -> bool:
|
| 98 |
if not FIREWORKS_API_KEY: return False
|
| 99 |
try:
|
| 100 |
+
cli = OpenAI(base_url="https://api.fireworks.ai/inference/v1", api_key=FIREWORKS_API_KEY)
|
| 101 |
+
_ = cli.chat.completions.create(model=model_id, messages=[{"role":"user","content":"ping"}], max_tokens=1)
|
| 102 |
+
return True
|
| 103 |
+
except Exception as e:
|
| 104 |
+
log.warning(f"FW heartbeat failed for {model_id}: {type(e).__name__}: {str(e)[:200]}")
|
| 105 |
+
return False
|
| 106 |
+
|
| 107 |
+
# ---------- HF Router (provider routing) driver ----------
|
| 108 |
+
class HFRouterChat(BaseChatModel):
|
| 109 |
+
model: str
|
| 110 |
+
hf_token: str | None = None
|
| 111 |
+
temperature: float = 0.2
|
| 112 |
+
max_new_tokens: int = 256
|
| 113 |
+
|
| 114 |
+
def __init__(self, **data):
|
| 115 |
+
super().__init__(**data)
|
| 116 |
+
self._client = InferenceClient(provider="fireworks-ai", api_key=self.hf_token)
|
| 117 |
+
|
| 118 |
+
@property
|
| 119 |
+
def _llm_type(self) -> str:
|
| 120 |
+
return "hf_router_fireworks"
|
| 121 |
+
|
| 122 |
+
def _convert(self, messages):
|
| 123 |
+
out=[]
|
| 124 |
+
for m in messages:
|
| 125 |
+
if isinstance(m, SystemMessage): out.append({"role":"system","content":m.content})
|
| 126 |
+
elif isinstance(m, HumanMessage): out.append({"role":"user","content":m.content})
|
| 127 |
+
elif isinstance(m, AIMessage): out.append({"role":"assistant","content":m.content})
|
| 128 |
+
else: out.append({"role":"user","content":str(getattr(m,"content",m))})
|
| 129 |
+
return out
|
| 130 |
+
|
| 131 |
+
def _generate(self, messages, stop=None, run_manager=None, **kwargs) -> ChatResult:
|
| 132 |
+
if not self.hf_token:
|
| 133 |
+
gen = ChatGeneration(message=AIMessage(content=""))
|
| 134 |
+
return ChatResult(generations=[gen], llm_output={"error":"no_hf_token"})
|
| 135 |
+
try:
|
| 136 |
+
resp = self._client.chat.completions.create(
|
| 137 |
+
model=self.model, # e.g., "openai/gpt-oss-20b"
|
| 138 |
+
messages=self._convert(messages),
|
| 139 |
+
stream=False,
|
| 140 |
+
max_tokens=kwargs.get("max_tokens", self.max_new_tokens),
|
| 141 |
+
temperature=kwargs.get("temperature", self.temperature),
|
| 142 |
+
)
|
| 143 |
+
text = ""
|
| 144 |
+
if hasattr(resp, "choices") and resp.choices:
|
| 145 |
+
ch = resp.choices[0]
|
| 146 |
+
if getattr(ch, "message", None) and getattr(ch.message, "content", None):
|
| 147 |
+
text = ch.message.content
|
| 148 |
+
elif getattr(ch, "text", None):
|
| 149 |
+
text = ch.text
|
| 150 |
+
gen = ChatGeneration(message=AIMessage(content=text or ""))
|
| 151 |
+
return ChatResult(generations=[gen], llm_output={"model": self.model})
|
| 152 |
+
except Exception as e:
|
| 153 |
+
log.warning(f"HF Router call failed for {self.model}: {type(e).__name__}: {str(e)[:200]}")
|
| 154 |
+
gen = ChatGeneration(message=AIMessage(content=""))
|
| 155 |
+
return ChatResult(generations=[gen], llm_output={"error": str(e)})
|
| 156 |
+
|
| 157 |
+
def _heartbeat_hf_router(model_id: str) -> bool:
|
| 158 |
+
if not HF_TOKEN: return False
|
| 159 |
+
try:
|
| 160 |
+
cli = InferenceClient(provider="fireworks-ai", api_key=HF_TOKEN)
|
| 161 |
+
_ = cli.chat.completions.create(model=model_id, messages=[{"role":"user","content":"ping"}], stream=False, max_tokens=1)
|
| 162 |
return True
|
| 163 |
except Exception as e:
|
| 164 |
+
log.warning(f"HF Router heartbeat failed for {model_id}: {type(e).__name__}: {str(e)[:200]}")
|
| 165 |
return False
|
| 166 |
|
| 167 |
+
# ---------- LLM selection ----------
|
| 168 |
def build_chat_llm():
|
| 169 |
+
# Prefer direct Fireworks when FW key is present
|
| 170 |
+
if FIREWORKS_API_KEY and _heartbeat_fireworks(FW_PRIMARY_MODEL):
|
| 171 |
+
log.info(f"Using Fireworks chat model: {FW_PRIMARY_MODEL}")
|
| 172 |
+
return FireworksOpenAIChat(model=FW_PRIMARY_MODEL, api_key=FIREWORKS_API_KEY)
|
| 173 |
+
if FIREWORKS_API_KEY and _heartbeat_fireworks(FW_SECONDARY_MODEL):
|
| 174 |
+
log.info(f"Using Fireworks fallback chat model: {FW_SECONDARY_MODEL}")
|
| 175 |
+
return FireworksOpenAIChat(model=FW_SECONDARY_MODEL, api_key=FIREWORKS_API_KEY)
|
| 176 |
+
|
| 177 |
+
# Else try HF Router (requires HF_TOKEN)
|
| 178 |
+
if HF_TOKEN and _heartbeat_hf_router(HF_PRIMARY_MODEL):
|
| 179 |
+
log.info(f"Using HF Router chat model: {HF_PRIMARY_MODEL}")
|
| 180 |
+
return HFRouterChat(model=HF_PRIMARY_MODEL, hf_token=HF_TOKEN)
|
| 181 |
+
if HF_TOKEN and _heartbeat_hf_router(HF_SECONDARY_MODEL):
|
| 182 |
+
log.info(f"Using HF Router fallback chat model: {HF_SECONDARY_MODEL}")
|
| 183 |
+
return HFRouterChat(model=HF_SECONDARY_MODEL, hf_token=HF_TOKEN)
|
| 184 |
+
|
| 185 |
log.warning("No working chat model; notice will be shown.")
|
| 186 |
return None
|
| 187 |
|
requirements.txt
CHANGED
|
@@ -7,4 +7,5 @@ langchain>=0.2
|
|
| 7 |
langchain-community>=0.2
|
| 8 |
langchain-huggingface>=0.0.3
|
| 9 |
pydantic>=2
|
| 10 |
-
python-dotenv
|
|
|
|
|
|
| 7 |
langchain-community>=0.2
|
| 8 |
langchain-huggingface>=0.0.3
|
| 9 |
pydantic>=2
|
| 10 |
+
python-dotenv
|
| 11 |
+
openai>=1.43.0
|