Spaces:
Running
Running
update
Browse files- app.py +14 -3
- metadata.json +29 -1
- plot_results.py +153 -0
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -12,6 +12,7 @@ from src.about import (
|
|
| 12 |
AUTHORS,
|
| 13 |
)
|
| 14 |
from src.display.formatting import make_clickable_model
|
|
|
|
| 15 |
|
| 16 |
demo = gr.Blocks(css=custom_css)
|
| 17 |
with demo:
|
|
@@ -96,9 +97,16 @@ with demo:
|
|
| 96 |
# rename columns
|
| 97 |
leaderboard_df = leaderboard_df.rename(columns={"Model Path": "Model"})
|
| 98 |
leaderboard_df = leaderboard_df.rename(columns={"Num Questions Parseable": "Percentage Questions Parseable"})
|
|
|
|
| 99 |
|
| 100 |
-
leaderboard_df_styled = leaderboard_df.style.background_gradient(
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
rounding = {}
|
| 104 |
# for col in ["Benchmark Score", "Num Questions Parseable"]:
|
|
@@ -110,13 +118,16 @@ with demo:
|
|
| 110 |
|
| 111 |
leaderboard_table = gr.components.Dataframe(
|
| 112 |
value=leaderboard_df_styled,
|
| 113 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 114 |
datatype=['markdown', 'number', 'number', 'number', 'str'],
|
| 115 |
elem_id="leaderboard-table",
|
| 116 |
interactive=False,
|
| 117 |
visible=True,
|
| 118 |
)
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
gr.Markdown(AUTHORS, elem_classes="markdown-text")
|
| 121 |
|
| 122 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 12 |
AUTHORS,
|
| 13 |
)
|
| 14 |
from src.display.formatting import make_clickable_model
|
| 15 |
+
from plot_results import create_performance_plot
|
| 16 |
|
| 17 |
demo = gr.Blocks(css=custom_css)
|
| 18 |
with demo:
|
|
|
|
| 97 |
# rename columns
|
| 98 |
leaderboard_df = leaderboard_df.rename(columns={"Model Path": "Model"})
|
| 99 |
leaderboard_df = leaderboard_df.rename(columns={"Num Questions Parseable": "Percentage Questions Parseable"})
|
| 100 |
+
# Set midpoint for gradient coloring based on data ranges
|
| 101 |
|
| 102 |
+
leaderboard_df_styled = leaderboard_df.style.background_gradient(
|
| 103 |
+
cmap="RdYlGn"
|
| 104 |
+
)
|
| 105 |
+
leaderboard_df_styled = leaderboard_df_styled.background_gradient(
|
| 106 |
+
cmap="RdYlGn_r",
|
| 107 |
+
subset=['Params'],
|
| 108 |
+
vmax=150
|
| 109 |
+
)
|
| 110 |
|
| 111 |
rounding = {}
|
| 112 |
# for col in ["Benchmark Score", "Num Questions Parseable"]:
|
|
|
|
| 118 |
|
| 119 |
leaderboard_table = gr.components.Dataframe(
|
| 120 |
value=leaderboard_df_styled,
|
|
|
|
| 121 |
datatype=['markdown', 'number', 'number', 'number', 'str'],
|
| 122 |
elem_id="leaderboard-table",
|
| 123 |
interactive=False,
|
| 124 |
visible=True,
|
| 125 |
)
|
| 126 |
|
| 127 |
+
# Create and show the performance plot below the table
|
| 128 |
+
fig = create_performance_plot()
|
| 129 |
+
plot = gr.Plot(value=fig, elem_id="performance-plot")
|
| 130 |
+
|
| 131 |
gr.Markdown(AUTHORS, elem_classes="markdown-text")
|
| 132 |
|
| 133 |
demo.queue(default_concurrency_limit=40).launch()
|
metadata.json
CHANGED
|
@@ -319,5 +319,33 @@
|
|
| 319 |
"speakleash/Bielik-11B-v2.0-Instruct": 11,
|
| 320 |
"speakleash/Bielik-11B-v2.2-Instruct": 11,
|
| 321 |
"speakleash/Bielik-11B-v2.1-Instruct": 11,
|
| 322 |
-
"speakleash/Bielik-11B-v2.3-Instruct": 11
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
}
|
|
|
|
| 319 |
"speakleash/Bielik-11B-v2.0-Instruct": 11,
|
| 320 |
"speakleash/Bielik-11B-v2.2-Instruct": 11,
|
| 321 |
"speakleash/Bielik-11B-v2.1-Instruct": 11,
|
| 322 |
+
"speakleash/Bielik-11B-v2.3-Instruct": 11,
|
| 323 |
+
"CYFRAGOVPL/PLLuM-12B-nc-chat": 12,
|
| 324 |
+
"CYFRAGOVPL/PLLuM-12B-chat": 12,
|
| 325 |
+
"CYFRAGOVPL/PLLuM-12B-instruct": 12,
|
| 326 |
+
"CYFRAGOVPL/Llama-PLLuM-8B-instruct": 8,
|
| 327 |
+
"CYFRAGOVPL/PLLuM-12B-nc-instruct": 12,
|
| 328 |
+
"CYFRAGOVPL/Llama-PLLuM-8B-chat": 8,
|
| 329 |
+
"CYFRAGOVPL/PLLuM-8x7B-nc-chat": 46.7,
|
| 330 |
+
"CYFRAGOVPL/PLLuM-8x7B-nc-instruct": 46.7,
|
| 331 |
+
"CYFRAGOVPL/PLLuM-8x7B-chat": 46.7,
|
| 332 |
+
"CYFRAGOVPL/PLLuM-8x7B-instruct": 46.7,
|
| 333 |
+
"CYFRAGOVPL/Llama-PLLuM-70B-chat": 70,
|
| 334 |
+
"CYFRAGOVPL/Llama-PLLuM-70B-instruct": 70,
|
| 335 |
+
"Qwen/Qwen2.5-7B-Instruct": 7,
|
| 336 |
+
"Qwen/Qwen2.5-14B-Instruct": 14,
|
| 337 |
+
"Qwen/Qwen2.5-1.5B-Instruct": 1.5,
|
| 338 |
+
"microsoft/phi-4": 14.7,
|
| 339 |
+
"Qwen/Qwen2.5-32B-Instruct": 32,
|
| 340 |
+
"Qwen/Qwen2.5-72B-Instruct": 72,
|
| 341 |
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": 70,
|
| 342 |
+
"meta-llama/Llama-3.2-1B-Instruct": 1,
|
| 343 |
+
"utter-project/EuroLLM-9B-Instruct": 9,
|
| 344 |
+
"mistralai/Mistral-Small-Instruct-2409": 22.2,
|
| 345 |
+
"mistralai/Mistral-Small-24B-Instruct-2501": 24,
|
| 346 |
+
"meta-llama/Llama-3.3-70B-Instruct": 70,
|
| 347 |
+
"meta-llama/Llama-3.2-3B-Instruct": 3,
|
| 348 |
+
"Qwen/Qwen2.5-3B-Instruct": 3,
|
| 349 |
+
"mistralai/Mistral-Nemo-Instruct-2407": 12,
|
| 350 |
+
"microsoft/Phi-4-mini-instruct": 4
|
| 351 |
}
|
plot_results.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
import json
|
| 5 |
+
import csv
|
| 6 |
+
|
| 7 |
+
def create_performance_plot(csv_path='benchmark_results.csv', metadata_path='metadata.json'):
|
| 8 |
+
# Define whitelist of interesting models (partial matches)
|
| 9 |
+
WHITELIST = [
|
| 10 |
+
'Meta-Llama-3.1-70B-Instruct'
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
# Read the benchmark results with error handling for inconsistent rows
|
| 14 |
+
valid_rows = []
|
| 15 |
+
expected_fields = 14 # Number of expected fields in each row
|
| 16 |
+
|
| 17 |
+
with open(csv_path, 'r') as f:
|
| 18 |
+
reader = csv.reader(f)
|
| 19 |
+
header = next(reader) # Get header row
|
| 20 |
+
# Strip whitespace from header names
|
| 21 |
+
header = [h.strip() for h in header]
|
| 22 |
+
for row in reader:
|
| 23 |
+
if len(row) == expected_fields: # Only keep rows with correct number of fields
|
| 24 |
+
# Strip whitespace from values
|
| 25 |
+
valid_rows.append([val.strip() for val in row])
|
| 26 |
+
|
| 27 |
+
# Create DataFrame from valid rows
|
| 28 |
+
df = pd.DataFrame(valid_rows, columns=header)
|
| 29 |
+
|
| 30 |
+
# Read model sizes from metadata
|
| 31 |
+
with open(metadata_path, 'r') as f:
|
| 32 |
+
metadata = json.load(f)
|
| 33 |
+
|
| 34 |
+
# Process the data
|
| 35 |
+
# Keep only successful runs (where Benchmark Score is not FAILED)
|
| 36 |
+
df = df[df['Benchmark Score'] != 'FAILED']
|
| 37 |
+
df = df[df['Benchmark Score'].notna()]
|
| 38 |
+
# Convert score to numeric, handling invalid values
|
| 39 |
+
df['Benchmark Score'] = pd.to_numeric(df['Benchmark Score'], errors='coerce')
|
| 40 |
+
df = df[df['Benchmark Score'].notna()] # Remove rows where conversion failed
|
| 41 |
+
|
| 42 |
+
# Convert Num Questions Parseable to numeric and calculate adjusted score
|
| 43 |
+
df['Num Questions Parseable'] = pd.to_numeric(df['Num Questions Parseable'], errors='coerce')
|
| 44 |
+
df['Benchmark Score'] = df['Benchmark Score'] * (df['Num Questions Parseable'] / 171)
|
| 45 |
+
|
| 46 |
+
# For each model, keep only the latest run
|
| 47 |
+
df['Run ID'] = df['Run ID'].fillna('')
|
| 48 |
+
df['timestamp'] = pd.to_datetime(df['Benchmark Completed'])
|
| 49 |
+
df = df.sort_values('timestamp')
|
| 50 |
+
df = df.drop_duplicates(subset=['Model Path'], keep='last')
|
| 51 |
+
|
| 52 |
+
# Get model sizes
|
| 53 |
+
def get_model_size(model_path):
|
| 54 |
+
# Try exact match first
|
| 55 |
+
if model_path in metadata:
|
| 56 |
+
return metadata[model_path]
|
| 57 |
+
# Try with max_length suffix
|
| 58 |
+
if f"{model_path},max_length=4096" in metadata:
|
| 59 |
+
return metadata[f"{model_path},max_length=4096"]
|
| 60 |
+
return None
|
| 61 |
+
|
| 62 |
+
# Print models without size before filtering
|
| 63 |
+
print("\nModels without size assigned:")
|
| 64 |
+
models_without_size = df[df['Model Path'].apply(get_model_size).isna()]
|
| 65 |
+
for model in models_without_size['Model Path']:
|
| 66 |
+
print(f"- {model}")
|
| 67 |
+
|
| 68 |
+
df['Model Size'] = df['Model Path'].apply(get_model_size)
|
| 69 |
+
df = df[df['Model Size'].notna()]
|
| 70 |
+
|
| 71 |
+
# Remove extreme outliers (scores that are clearly errors)
|
| 72 |
+
q1 = df['Benchmark Score'].quantile(0.25)
|
| 73 |
+
q3 = df['Benchmark Score'].quantile(0.75)
|
| 74 |
+
iqr = q3 - q1
|
| 75 |
+
df = df[
|
| 76 |
+
(df['Benchmark Score'] >= q1 - 1.5 * iqr) &
|
| 77 |
+
(df['Benchmark Score'] <= q3 + 1.5 * iqr)
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
# Find models on Pareto frontier
|
| 81 |
+
sizes = sorted(df['Model Size'].unique())
|
| 82 |
+
frontier_points = []
|
| 83 |
+
max_score = float('-inf')
|
| 84 |
+
frontier_models = set()
|
| 85 |
+
|
| 86 |
+
for size in sizes:
|
| 87 |
+
# Get scores for models of this size or smaller
|
| 88 |
+
subset = df[df['Model Size'] <= size]
|
| 89 |
+
if len(subset) > 0:
|
| 90 |
+
max_score_idx = subset['Benchmark Score'].idxmax()
|
| 91 |
+
current_max = subset.loc[max_score_idx, 'Benchmark Score']
|
| 92 |
+
if current_max > max_score:
|
| 93 |
+
max_score = current_max
|
| 94 |
+
frontier_points.append((size, max_score))
|
| 95 |
+
frontier_models.add(subset.loc[max_score_idx, 'Model Path'])
|
| 96 |
+
|
| 97 |
+
# Filter models - keep those on Pareto frontier or matching whitelist
|
| 98 |
+
df['Keep'] = False
|
| 99 |
+
for idx, row in df.iterrows():
|
| 100 |
+
if row['Model Path'] in frontier_models:
|
| 101 |
+
df.loc[idx, 'Keep'] = True
|
| 102 |
+
else:
|
| 103 |
+
for pattern in WHITELIST:
|
| 104 |
+
if pattern in row['Model Path']:
|
| 105 |
+
df.loc[idx, 'Keep'] = True
|
| 106 |
+
break
|
| 107 |
+
|
| 108 |
+
df = df[df['Keep']]
|
| 109 |
+
|
| 110 |
+
# Create the plot
|
| 111 |
+
fig = plt.figure(figsize=(12, 8))
|
| 112 |
+
|
| 113 |
+
# Create scatter plot
|
| 114 |
+
plt.scatter(df['Model Size'],
|
| 115 |
+
df['Benchmark Score'],
|
| 116 |
+
alpha=0.6)
|
| 117 |
+
|
| 118 |
+
# Add labels for points
|
| 119 |
+
for idx, row in df.iterrows():
|
| 120 |
+
# Get model name - either last part of path or full name for special cases
|
| 121 |
+
model_name = row['Model Path'].split('/')[-1]
|
| 122 |
+
if any(pattern in row['Model Path'] for pattern in ['gpt-3', 'gpt-4']):
|
| 123 |
+
model_name = row['Model Path']
|
| 124 |
+
|
| 125 |
+
plt.annotate(model_name,
|
| 126 |
+
(row['Model Size'], row['Benchmark Score']),
|
| 127 |
+
xytext=(5, 5), textcoords='offset points',
|
| 128 |
+
fontsize=8,
|
| 129 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=0.5))
|
| 130 |
+
|
| 131 |
+
# Plot the Pareto frontier line
|
| 132 |
+
if frontier_points:
|
| 133 |
+
frontier_x, frontier_y = zip(*frontier_points)
|
| 134 |
+
plt.plot(frontier_x, frontier_y, 'r--', label='Pareto frontier')
|
| 135 |
+
|
| 136 |
+
# Customize the plot
|
| 137 |
+
plt.grid(True, linestyle='--', alpha=0.7)
|
| 138 |
+
plt.xlabel('Model Size (billions of parameters)')
|
| 139 |
+
plt.ylabel('Benchmark Score')
|
| 140 |
+
plt.title('Model Performance vs Size (Pareto Frontier)')
|
| 141 |
+
|
| 142 |
+
# Add legend
|
| 143 |
+
plt.legend()
|
| 144 |
+
|
| 145 |
+
# Adjust layout to prevent label cutoff
|
| 146 |
+
plt.tight_layout()
|
| 147 |
+
|
| 148 |
+
return fig
|
| 149 |
+
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
# When run as a script, save the plot to a file
|
| 152 |
+
fig = create_performance_plot()
|
| 153 |
+
fig.savefig('model_performance.png', dpi=300, bbox_inches='tight')
|
requirements.txt
CHANGED
|
@@ -2,3 +2,4 @@ tqdm
|
|
| 2 |
gradio
|
| 3 |
gradio_client
|
| 4 |
pandas
|
|
|
|
|
|
| 2 |
gradio
|
| 3 |
gradio_client
|
| 4 |
pandas
|
| 5 |
+
matplotlib
|