Spaces:
Running
Running
| # Ultralytics π AGPL-3.0 License - https://ultralytics.com/license | |
| import sys | |
| from unittest import mock | |
| from tests import MODEL | |
| from ultralytics import YOLO | |
| from ultralytics.cfg import get_cfg | |
| from ultralytics.engine.exporter import Exporter | |
| from ultralytics.models.yolo import classify, detect, segment | |
| from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR | |
| def test_func(*args): # noqa | |
| """Test function callback for evaluating YOLO model performance metrics.""" | |
| print("callback test passed") | |
| def test_export(): | |
| """Tests the model exporting function by adding a callback and asserting its execution.""" | |
| exporter = Exporter() | |
| exporter.add_callback("on_export_start", test_func) | |
| assert test_func in exporter.callbacks["on_export_start"], "callback test failed" | |
| f = exporter(model=YOLO("yolo11n.yaml").model) | |
| YOLO(f)(ASSETS) # exported model inference | |
| def test_detect(): | |
| """Test YOLO object detection training, validation, and prediction functionality.""" | |
| overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 1, "save": False} | |
| cfg = get_cfg(DEFAULT_CFG) | |
| cfg.data = "coco8.yaml" | |
| cfg.imgsz = 32 | |
| # Trainer | |
| trainer = detect.DetectionTrainer(overrides=overrides) | |
| trainer.add_callback("on_train_start", test_func) | |
| assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
| trainer.train() | |
| # Validator | |
| val = detect.DetectionValidator(args=cfg) | |
| val.add_callback("on_val_start", test_func) | |
| assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
| val(model=trainer.best) # validate best.pt | |
| # Predictor | |
| pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]}) | |
| pred.add_callback("on_predict_start", test_func) | |
| assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
| # Confirm there is no issue with sys.argv being empty. | |
| with mock.patch.object(sys, "argv", []): | |
| result = pred(source=ASSETS, model=MODEL) | |
| assert len(result), "predictor test failed" | |
| overrides["resume"] = trainer.last | |
| trainer = detect.DetectionTrainer(overrides=overrides) | |
| try: | |
| trainer.train() | |
| except Exception as e: | |
| print(f"Expected exception caught: {e}") | |
| return | |
| Exception("Resume test failed!") | |
| def test_segment(): | |
| """Tests image segmentation training, validation, and prediction pipelines using YOLO models.""" | |
| overrides = {"data": "coco8-seg.yaml", "model": "yolo11n-seg.yaml", "imgsz": 32, "epochs": 1, "save": False} | |
| cfg = get_cfg(DEFAULT_CFG) | |
| cfg.data = "coco8-seg.yaml" | |
| cfg.imgsz = 32 | |
| # YOLO(CFG_SEG).train(**overrides) # works | |
| # Trainer | |
| trainer = segment.SegmentationTrainer(overrides=overrides) | |
| trainer.add_callback("on_train_start", test_func) | |
| assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
| trainer.train() | |
| # Validator | |
| val = segment.SegmentationValidator(args=cfg) | |
| val.add_callback("on_val_start", test_func) | |
| assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
| val(model=trainer.best) # validate best.pt | |
| # Predictor | |
| pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]}) | |
| pred.add_callback("on_predict_start", test_func) | |
| assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
| result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo11n-seg.pt") | |
| assert len(result), "predictor test failed" | |
| # Test resume | |
| overrides["resume"] = trainer.last | |
| trainer = segment.SegmentationTrainer(overrides=overrides) | |
| try: | |
| trainer.train() | |
| except Exception as e: | |
| print(f"Expected exception caught: {e}") | |
| return | |
| Exception("Resume test failed!") | |
| def test_classify(): | |
| """Test image classification including training, validation, and prediction phases.""" | |
| overrides = {"data": "imagenet10", "model": "yolo11n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False} | |
| cfg = get_cfg(DEFAULT_CFG) | |
| cfg.data = "imagenet10" | |
| cfg.imgsz = 32 | |
| # YOLO(CFG_SEG).train(**overrides) # works | |
| # Trainer | |
| trainer = classify.ClassificationTrainer(overrides=overrides) | |
| trainer.add_callback("on_train_start", test_func) | |
| assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
| trainer.train() | |
| # Validator | |
| val = classify.ClassificationValidator(args=cfg) | |
| val.add_callback("on_val_start", test_func) | |
| assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
| val(model=trainer.best) | |
| # Predictor | |
| pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]}) | |
| pred.add_callback("on_predict_start", test_func) | |
| assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
| result = pred(source=ASSETS, model=trainer.best) | |
| assert len(result), "predictor test failed" | |