surfiniaburger commited on
Commit
2a632a7
·
1 Parent(s): 590a472
Files changed (2) hide show
  1. app.py +1 -1
  2. tools.py +2 -1
app.py CHANGED
@@ -117,7 +117,7 @@ try:
117
 
118
  ADK_AGENT = Agent(
119
  name="AuraMindGlowAgent",
120
- model="gemini-1.5-flash-001",
121
  description="A farming assistant that can diagnose plant health and suggest remedies.",
122
  instruction="You are a friendly farming assistant. Your goal is to help users identify plant health issues and find solutions. Use your tools to diagnose the plant from an image and then find a remedy.",
123
  tools=[DIAGNOSIS_TOOL, REMEDY_TOOL]
 
117
 
118
  ADK_AGENT = Agent(
119
  name="AuraMindGlowAgent",
120
+ model="gemini-2.5-flash",
121
  description="A farming assistant that can diagnose plant health and suggest remedies.",
122
  instruction="You are a friendly farming assistant. Your goal is to help users identify plant health issues and find solutions. Use your tools to diagnose the plant from an image and then find a remedy.",
123
  tools=[DIAGNOSIS_TOOL, REMEDY_TOOL]
tools.py CHANGED
@@ -25,13 +25,14 @@ def create_plant_diagnosis_tool(model: FastVisionModel, processor: AutoProcessor
25
 
26
  image = image.convert("RGB")
27
  messages = [
28
- {"role": "user", "content": [{"type": "text", "text": "What is the condition of this maize plant? Provide only the name of the condition."}, {"type": "image", "image": image}]}
29
  ]
30
  text_prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
31
  inputs = processor(text=text_prompt, images=image, return_tensors="pt").to(model.device)
32
 
33
  with torch.inference_mode():
34
  outputs = model.generate(**inputs, max_new_tokens=48, use_cache=True)
 
35
 
36
  response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
37
 
 
25
 
26
  image = image.convert("RGB")
27
  messages = [
28
+ {"role": "user", "content": [{"type": "text", "text": "What is the condition of this maize plant?"}, {"type": "image", "image": image}]}
29
  ]
30
  text_prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
31
  inputs = processor(text=text_prompt, images=image, return_tensors="pt").to(model.device)
32
 
33
  with torch.inference_mode():
34
  outputs = model.generate(**inputs, max_new_tokens=48, use_cache=True)
35
+ print(f"Model outputs: {outputs}")
36
 
37
  response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
38