Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,64 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
gr.Textbox(
|
| 50 |
-
gr.
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
],
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
+
import whisper
|
| 2 |
+
import openai
|
| 3 |
import gradio as gr
|
| 4 |
+
from gtts import gTTS
|
| 5 |
+
from moviepy.editor import VideoFileClip
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
+
def transcribe_video(video_path):
|
| 9 |
+
# Extract audio from video file
|
| 10 |
+
video = VideoFileClip(video_path)
|
| 11 |
+
audio_path = "temp_audio.wav"
|
| 12 |
+
video.audio.write_audiofile(audio_path, codec='pcm_s16le')
|
| 13 |
|
| 14 |
+
# Load Whisper model and transcribe audio
|
| 15 |
+
model = whisper.load_model("base")
|
| 16 |
+
result = model.transcribe(audio_path)
|
| 17 |
+
transcription = result["text"]
|
| 18 |
|
| 19 |
+
# Remove temporary audio file
|
| 20 |
+
os.remove(audio_path)
|
| 21 |
+
return transcription
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
def summarize_text(text):
|
| 24 |
+
response = openai.Completion.create(
|
| 25 |
+
engine="text-davinci-003",
|
| 26 |
+
prompt=f"Summarize the following text:\n\n{text}",
|
| 27 |
+
max_tokens=150
|
| 28 |
+
)
|
| 29 |
+
summary = response.choices[0].text.strip()
|
| 30 |
+
return summary
|
| 31 |
|
| 32 |
+
def text_to_speech(text, language="en"):
|
| 33 |
+
tts = gTTS(text=text, lang=language)
|
| 34 |
+
tts.save("summary_audio.mp3")
|
| 35 |
+
return "summary_audio.mp3"
|
| 36 |
|
| 37 |
+
def process_video(video):
|
| 38 |
+
# Transcribe the video
|
| 39 |
+
transcription = transcribe_video(video)
|
| 40 |
|
| 41 |
+
# Summarize the transcription
|
| 42 |
+
summary = summarize_text(transcription)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Convert summary to speech
|
| 45 |
+
audio_file = text_to_speech(summary)
|
| 46 |
|
| 47 |
+
return transcription, summary, audio_file
|
| 48 |
|
| 49 |
+
# Create Gradio interface
|
| 50 |
+
iface = gr.Interface(
|
| 51 |
+
fn=process_video,
|
| 52 |
+
inputs=gr.Video(label="Upload Video"),
|
| 53 |
+
outputs=[
|
| 54 |
+
gr.Textbox(label="Transcription"),
|
| 55 |
+
gr.Textbox(label="Summary"),
|
| 56 |
+
gr.Audio(label="Summary Audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
],
|
| 58 |
+
title="Video Transcription and Summarization",
|
| 59 |
+
description="Upload a video file to transcribe and summarize its content."
|
| 60 |
)
|
| 61 |
|
| 62 |
+
# Launch the interface
|
| 63 |
+
iface.launch()
|
| 64 |
|
|
|
|
|
|