File size: 2,987 Bytes
5bbf115 566d199 5bbf115 60fc741 324b0e7 1acf1e8 60fc741 324b0e7 60fc741 9bffe27 60fc741 ecd9b9a 60fc741 9bffe27 60fc741 5bbf115 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
sdk: streamlit
sdk_version: 1.51.0
license: apache-2.0
---
# π³ Credit Card Fraud Detection Dashboard
[](https://streamlit.io/)\
[](DATA_LICENSE)\
[](https://github.com/tarekmasryo)
---
## π Overview
Interactive dashboard built with **Streamlit, Plotly, and Scikit-learn** for real-time **fraud detection analysis**.
It demonstrates a **business-aware ML pipeline** on the classic **Credit Card Fraud Dataset** (284,807 transactions, only 492 frauds β 0.17%).
- π Upload your own transaction CSV or use the built-in dataset
- βοΈ Custom decision thresholds with cost-sensitive analysis
- π Confusion matrix, ROC/PR curves, and costβthreshold visualization
- π‘ Permutation feature importance for interpretability
- π§Ύ Segmented performance profiling (by amount, time of day, etc.)
---
## π Dashboard Preview
### Data Overview

### Prediction Engine

### Model Metrics

### Model Insights

### Data Quality & Segments

---
## π Features
- **Models**: RandomForest & XGBoost (calibrated)
- **Presets**: Strict / Balanced / Lenient thresholds
- **Threshold Finder**: auto-select by target Precision/Recall
- **Cost Analysis**: business-aligned FP vs FN costs
- **Visuals**: Confusion matrix, ROC, PR, cost vs threshold curves
- **Insights**: Permutation importance, segmented KPIs
- **Data Handling**: automatic schema validation + engineered features (`log(Amount)`, business hours, night proxy)
---
## π Run Locally
Clone the repo and install requirements:
```bash
git clone https://github.com/tarekmasryo/fraud-detection-dashboard.git
cd fraud-detection-dashboard
pip install -r requirements.txt
```
Run the app:
```bash
streamlit run app.py
```
---
## βοΈ Deploy on Hugging Face Spaces
This repository is ready to be deployed as a **Streamlit Space** on [Hugging Face](https://huggingface.co/spaces).
Make sure to include the following files in your repo:
- `app.py` β main app file
- `requirements.txt` β Python dependencies
- `artifacts/` β trained model `.joblib` files and `thresholds.json`
- `data/creditcard.csv` (optional, for default dataset)
---
## π License & Attribution
- **Data** β Original [Credit Card Fraud Dataset](https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud)
Licensed under **CC BY-NC 4.0** β for research & educational use only.
---
## Related Repositories
- π [Fraud Detection EDA + Baseline Models](https://github.com/tarekmasryo/creditcard-fraud-detection) |