# Copyright 2024 The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path import io import yaml from PIL import Image, ImageCms import torch import numpy as np from transformers import T5Tokenizer, T5EncoderModel from safetensors.torch import load_file import diffusers from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler from diffusers.utils import check_min_version, export_to_video from huggingface_hub import hf_hub_download from controlnet_pipeline import ControlnetCogVideoXPipeline from cogvideo_transformer import CogVideoXTransformer3DModel from training.utils import save_frames_as_pngs from training.helpers import get_conditioning # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.31.0.dev0") def convert_to_srgb(img: Image): if 'icc_profile' in img.info: icc = img.info['icc_profile'] src_profile = ImageCms.ImageCmsProfile(io.BytesIO(icc)) dst_profile = ImageCms.createProfile("sRGB") img = ImageCms.profileToProfile(img, src_profile, dst_profile, outputMode='RGB') else: img = img.convert("RGB") # Assume sRGB return img INTERVALS = { "present": { "in_start": 0, "in_end": 16, "out_start": 0, "out_end": 16, "center": 8, "window_size": 16, "mode": "1x", "fps": 240 }, "past, present and future": { "in_start": 4, "in_end": 12, "out_start": 0, "out_end": 16, "center": 8, "window_size": 16, "mode": "2x", "fps": 240, }, } def convert_to_batch( image, interval_key="present", image_size=(720, 1280), ): interval = INTERVALS[interval_key] inp_int, out_int, num_frames = get_conditioning( in_start=interval['in_start'], in_end=interval['in_end'], out_start=interval['out_start'], out_end=interval['out_end'], mode=interval['mode'], fps=interval['fps'], ) blur_img_original = convert_to_srgb(image) H, W = blur_img_original.size blur_img = blur_img_original.resize((image_size[1], image_size[0])) # pil is width, height blur_img = torch.from_numpy(np.array(blur_img)[None]).permute(0, 3, 1, 2).contiguous().float() blur_img = blur_img / 127.5 - 1.0 data = { "original_size": (H, W), 'blur_img': blur_img, 'caption': "", 'input_interval': inp_int, 'output_interval': out_int, 'height': image_size[0], 'width': image_size[1], 'num_frames': num_frames, } return data def load_model(args): with open(args.model_config_path) as f: model_config = yaml.safe_load(f) load_dtype = torch.float16 transformer = CogVideoXTransformer3DModel.from_pretrained( args.pretrained_model_path, subfolder="transformer", torch_dtype=load_dtype, revision=model_config["revision"], variant=model_config["variant"], low_cpu_mem_usage=False, attn_implementation="flash_attention_2", ) weight_path = hf_hub_download( repo_id=args.blur2vid_hf_repo_path, filename="cogvideox-outsidephotos/checkpoint/model.safetensors" ) transformer.load_state_dict(load_file(weight_path)) text_encoder = T5EncoderModel.from_pretrained( args.pretrained_model_path, subfolder="text_encoder", revision=model_config["revision"], ) tokenizer = T5Tokenizer.from_pretrained( args.pretrained_model_path, subfolder="tokenizer", revision=model_config["revision"], ) vae = AutoencoderKLCogVideoX.from_pretrained( args.pretrained_model_path, subfolder="vae", revision=model_config["revision"], variant=model_config["variant"], ) scheduler = CogVideoXDPMScheduler.from_pretrained( args.pretrained_model_path, subfolder="scheduler" ) # Enable slicing or tiling if VRAM is low! vae.enable_slicing() vae.enable_tiling() # For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. # Somehow for HF Spaces we do need to keep them in full precision weight_dtype = torch.bfloat16 # torch.float32 # torch.bfloat16 text_encoder.to(dtype=weight_dtype) transformer.to(dtype=weight_dtype) vae.to(dtype=weight_dtype) pipe = ControlnetCogVideoXPipeline.from_pretrained( args.pretrained_model_path, tokenizer=tokenizer, transformer=transformer, text_encoder=text_encoder, vae=vae, scheduler=scheduler, torch_dtype=weight_dtype, ) scheduler_args = {} if "variance_type" in pipe.scheduler.config: variance_type = pipe.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args) return pipe, model_config def inference_on_image(pipe, image, interval_key, model_config, args): # If passed along, set the training seed now. if args.seed is not None: np.random.seed(args.seed) torch.manual_seed(args.seed) # run inference generator = torch.Generator(device=args.device).manual_seed(args.seed) if args.seed else None with torch.autocast(device_type=args.device, dtype=torch.bfloat16, enabled=True): batch = convert_to_batch(image, interval_key, (args.video_height, args.video_width)) frame = batch["blur_img"].permute(0, 2, 3, 1).cpu().numpy() frame = (frame + 1.0) * 127.5 frame = frame.astype(np.uint8) pipeline_args = { "prompt": "", "negative_prompt": "", "image": frame, "input_intervals": torch.stack([batch["input_interval"]]), "output_intervals": torch.stack([batch["output_interval"]]), "guidance_scale": model_config["guidance_scale"], "use_dynamic_cfg": model_config["use_dynamic_cfg"], "height": batch["height"], "width": batch["width"], "num_frames": torch.tensor([[model_config["max_num_frames"]]]), # torch.tensor([[batch["num_frames"]]]), "num_inference_steps": args.num_inference_steps, } input_image = frame num_frames = batch["num_frames"] # this is the actual number of frames, the video generation is padded by one frame print(f"Running inference for interval {interval_key}...") video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0] video = video[0:num_frames] return input_image, video def main(args): output_path = Path(args.output_path) output_path.mkdir(exist_ok=True) image_path = Path(args.image_path) is_dir = image_path.is_dir() if is_dir: image_paths = sorted(list(image_path.glob("*.*"))) else: image_paths = [image_path] pipe, model_config = load_model(args) pipe = pipe.to(args.device) for image_path in image_paths: image = Image.open(image_path) processed_image, video = inference_on_image(pipe, image, "past, present and future", model_config, args) vid_output_path = output_path / f"{image_path.stem}.mp4" export_to_video(video, vid_output_path, fps=20) # save input image as well inpug_image_output_path = output_path / f"{image_path.stem}_input.png" Image.fromarray(processed_image[0]).save(inpug_image_output_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--image_path", type=str, required=True, help="Path to image input or directory containing input images", ) parser.add_argument( "--blur2vid_hf_repo_path", type=str, default="tedlasai/blur2vid", help="hf repo containing the weight files", ) parser.add_argument( "--pretrained_model_path", type=str, default="THUDM/CogVideoX-2b", help="repo id or path for pretrained CogVideoX model", ) parser.add_argument( "--model_config_path", type=str, default="training/configs/outsidephotos.yaml", help="path to model config yaml", ) parser.add_argument( "--output_path", type=str, default="output/", help="path to output", ) parser.add_argument( "--video_width", type=int, default=1280, help="video resolution width", ) parser.add_argument( "--video_height", type=int, default=720, help="video resolution height", ) parser.add_argument( "--num_inference_steps", type=int, default=50, help="number of DDIM steps", ) parser.add_argument( "--seed", type=int, default=None, help="random generator seed", ) parser.add_argument( "--device", type=str, default="cuda", help="inference device", ) args = parser.parse_args() main(args) # python inference.py --image_path assets/dummy_image.png --output_path output/