Update app.py
Browse files
app.py
CHANGED
|
@@ -45,12 +45,15 @@ text_generator_pipeline = pipeline(
|
|
| 45 |
# Wrap it as a LangChain LLM
|
| 46 |
llm = HuggingFacePipeline(pipeline=text_generator_pipeline)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
# Create vectorstore and retriever
|
| 49 |
vectorstore_faiss = LangChainFAISS(
|
| 50 |
index=faiss_index,
|
| 51 |
docstore=docstore,
|
| 52 |
index_to_docstore_id=id_map,
|
| 53 |
-
embedding_function=
|
| 54 |
)
|
| 55 |
|
| 56 |
# Create a retriever that returns top-k most relevant chunks
|
|
|
|
| 45 |
# Wrap it as a LangChain LLM
|
| 46 |
llm = HuggingFacePipeline(pipeline=text_generator_pipeline)
|
| 47 |
|
| 48 |
+
# Re-declare embedding function
|
| 49 |
+
embed_fn = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 50 |
+
|
| 51 |
# Create vectorstore and retriever
|
| 52 |
vectorstore_faiss = LangChainFAISS(
|
| 53 |
index=faiss_index,
|
| 54 |
docstore=docstore,
|
| 55 |
index_to_docstore_id=id_map,
|
| 56 |
+
embedding_function=embed_fn # Not needed for retrieval only
|
| 57 |
)
|
| 58 |
|
| 59 |
# Create a retriever that returns top-k most relevant chunks
|