Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import faiss
|
| 2 |
+
import pickle
|
| 3 |
+
import os
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
+
from langchain.llms import HuggingFacePipeline
|
| 6 |
+
from langchain.vectorstores import FAISS as LangChainFAISS
|
| 7 |
+
from langchain.docstore import InMemoryDocstore
|
| 8 |
+
from langchain.schema import Document
|
| 9 |
+
from langchain.chains import RetrievalQA
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
# Paths (relative to app root)
|
| 13 |
+
vector_path = "vector_store_faiss_chroma/faiss_index.index"
|
| 14 |
+
metadata_path = "vector_store_faiss_chroma/metadata.pkl"
|
| 15 |
+
model_path = "HuggingFaceModels/falcon-1b-instruct"
|
| 16 |
+
|
| 17 |
+
# Load the FAISS index
|
| 18 |
+
faiss_index = faiss.read_index(f"{vector_path}")
|
| 19 |
+
|
| 20 |
+
# Load metadata (text chunks)
|
| 21 |
+
with open(f"{metadata_path}", "rb") as f:
|
| 22 |
+
metadata = pickle.load(f)
|
| 23 |
+
|
| 24 |
+
# Rebuild LangChain Documents
|
| 25 |
+
docs = [Document(page_content=doc["page_content"]) for doc in metadata]
|
| 26 |
+
|
| 27 |
+
# Link documents to FAISS vectors
|
| 28 |
+
docstore = InMemoryDocstore({str(i): docs[i] for i in range(len(docs))})
|
| 29 |
+
id_map = {i: str(i) for i in range(len(docs))}
|
| 30 |
+
|
| 31 |
+
# Load the tokenizer and model
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 34 |
+
|
| 35 |
+
# Create a generation pipeline
|
| 36 |
+
text_generator_pipeline = pipeline(
|
| 37 |
+
model=model,
|
| 38 |
+
tokenizer=tokenizer,
|
| 39 |
+
task="text-generation",
|
| 40 |
+
return_full_text=False,
|
| 41 |
+
max_new_tokens=512,
|
| 42 |
+
temperature=0.2
|
| 43 |
+
)
|
| 44 |
+
# Wrap it as a LangChain LLM
|
| 45 |
+
llm = HuggingFacePipeline(pipeline=text_generator_pipeline)
|
| 46 |
+
|
| 47 |
+
# Create vectorstore and retriever
|
| 48 |
+
vectorstore_faiss = LangChainFAISS(
|
| 49 |
+
index=faiss_index,
|
| 50 |
+
docstore=docstore,
|
| 51 |
+
index_to_docstore_id=id_map,
|
| 52 |
+
embedding_function=None # Not needed for retrieval only
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Create a retriever that returns top-k most relevant chunks
|
| 56 |
+
retriever = vectorstore_faiss.as_retriever(search_kwargs={"k": 3})
|
| 57 |
+
|
| 58 |
+
# Create the RAG pipeline (Retriever + LLM)
|
| 59 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 60 |
+
llm=llm,
|
| 61 |
+
chain_type="stuff",
|
| 62 |
+
retriever=retriever,
|
| 63 |
+
return_source_documents=True
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# π Chatbot function: takes a user question, returns generated answer
|
| 67 |
+
def ask_rag(query):
|
| 68 |
+
result = qa_chain({"query": query})
|
| 69 |
+
answer = result["result"]
|
| 70 |
+
|
| 71 |
+
# Optional: include sources (limited to 2)
|
| 72 |
+
sources = result.get("source_documents", [])
|
| 73 |
+
source_texts = "\n\n".join([f"πΉ Source {i+1}:\n{doc.page_content[:300]}..." for i, doc in enumerate(sources[:2])])
|
| 74 |
+
|
| 75 |
+
return f"π Answer:\n{answer}\n\nπ Sources:\n{source_texts}"
|
| 76 |
+
|
| 77 |
+
# ποΈ Gradio UI components
|
| 78 |
+
gr.Interface(
|
| 79 |
+
fn=ask_rag,
|
| 80 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask me about UCT admissions, housing, fees..."),
|
| 81 |
+
outputs="text",
|
| 82 |
+
title="π University of Cape Town Course Advisor Chatbot",
|
| 83 |
+
description="Ask academic questions. Powered by FAISS + Falcon-E-1B + LangChain.",
|
| 84 |
+
allow_flagging="never"
|
| 85 |
+
).launch()
|